Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Sci ; 32(9): 951-6, 2016.
Article in English | MEDLINE | ID: mdl-27682399

ABSTRACT

The present article reports a novel biosensor for organophosphorus pesticides based on fluorescence resonance energy transfer (FRET) between nitrogen-doped carbon dots (NC-dots) and gold nanoparticles (AuNPs). The effective NC-dots/AuNPs assembly through the Au-N interaction results in good fluorescence quenching. Active acetylcholinesterase (AChE) catalyzes the hydrolysis of acetylthiocholine into -SH containing thiocholine to replace the NC-dots and trigger the aggregation of AuNPs. In the presence of paraoxon, the activity of AChE is inhibited, and thus preventing the generation of thiocholine, causing fewer NC-dots to be replaced. As a consequence, the fluorescence intensity gradually decreases with increasing amount of paraoxon. This biosensor does not require any complex synthesis or modification, and the results show a wide detection range of from 10(-4) to 10(-9) g/L with a detection limit of 1.0 × 10(-9) g/L (3.6 × 10(-12) mol/L). Two linear response regions have been reported with a turning point at about 10(-6) g/L and three different factors that would influence the response behavior. These phenomena discussed in detail so as to explain the special response mechanism.


Subject(s)
Carbon/chemistry , Fluorescence Resonance Energy Transfer/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Nitrogen/chemistry , Organophosphorus Compounds/analysis , Quantum Dots/chemistry , Biosensing Techniques , Fruit and Vegetable Juices/analysis , Limit of Detection , Malus/chemistry , Organophosphorus Compounds/chemistry , Pesticides/analysis , Pesticides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...