Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(3)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33535428

ABSTRACT

A new optical fiber sensor based on the fluorescence lifetime was prepared for specific detection of sulfate ion concentration, where 1,1'-(anthracene-9,10-diylbis(methylene))bis(3-(dodecylcarbamoyl)pyridin-1-ium) acted as the sulfate fluorescent probe. The probe was immobilized in a porous cellulose acetate membrane to form the sensitive membrane by the immersion precipitation method, and polyethylene glycol 400 acted as a porogen. The sensing principle was proven, as a sulfate ion could form a complex with the probe through a hydrogen bond, which led to structural changes and fluorescence for the probe. The signals of the fluorescence lifetime data were collected by the lock-in amplifier and converted into the phase delay to realize the detection of sulfate ions. Based on the phase-modulated fluorometry, the relationship between the phase delay of the probe and the sulfate ion concentration was described in the range from 2 to 10 mM. The specificity and response time of this optical fiber sensor were also researched.

2.
Nanotechnology ; 31(9): 095501, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-31703221

ABSTRACT

For the early diagnosis of gastric cancer, microRNA-148a (miRNA-148a) as a promising biomarker is measured by a simple colorimetric biosensor due to its unique surface plasmon resonance (SPR) absorption of gold nanoparticles (AuNPs). In the assay system, the sensing probes are facilitated by the conjugation of AuNPs with RNA probes (RNAP) via Au-S bonds, which align in a tail-to-tail fashion onto the target RNA. When miRNA-148a is introduced, a sandwich hybridization reaction is triggered between the AuNP-RNAP conjugates and targets, resulting in changes in the SPR absorption band, microscopic distribution and macroscopic color of the AuNP solution. Following this principle, this colorimetric method is able to quantitatively detect miRNA-148a at nanomolar level with a limit of ∼1.9 nM, and exhibits high sensitivity and selectivity by a low-cost UV-vis spectrometer or even the naked eye. Moreover, the AuNP network materials with a characteristic sharp 'melting transition' provide significant guidance for the reusability of DNA or RNA biosensors.


Subject(s)
Biosensing Techniques/methods , Metal Nanoparticles/chemistry , MicroRNAs/analysis , RNA Probes/chemistry , Stomach Neoplasms/diagnosis , Biosensing Techniques/instrumentation , Colorimetry , Gold/chemistry , Humans , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...