Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Bull (Beijing) ; 67(1): 45-53, 2022 Jan.
Article in English | MEDLINE | ID: mdl-36545958

ABSTRACT

Strain engineering is a promising method for tuning the electronic properties of two-dimensional (2D) materials, which are capable of sustaining enormous strain thanks to their atomic thinness. However, applying a large and homogeneous strain on these 2D materials, including the typical semiconductor MoS2, remains cumbersome. Here we report a facile strategy for the fabrication of highly strained MoS2 via chalcogenide substitution reaction (CSR) of MoTe2 with lattice inheritance. The MoS2 resulting from the sulfurized MoTe2 sustains ultra large in-plane strain (approaching its strength limit ~10%) with great homogeneity. Furthermore, the strain can be deterministically and continuously tuned to ~1.5% by simply varying the processing temperature. Thanks to the fine control of our CSR process, we demonstrate a heterostructure of strained MoS2/MoTe2 with abrupt interface. Finally, we verify that such a large strain potentially allows the modulation of MoS2 bandgap over an ultra-broad range (~1 eV). Our controllable CSR strategy paves the way for the fabrication of highly strained 2D materials for applications in devices.

2.
Nanoscale ; 14(38): 14129-14134, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36111459

ABSTRACT

The linear dichroism (LD) conversion shows promising applications for polarized detectors, optical transition and light propagation. However, polarity reversal always occurs at a certain wavelength in LD materials, which can only distinguish two wavelength bands as wavelength-selective photodetectors. In this study, the multi-degree-of-freedom of optical anisotropy based on 2D PdPS flakes is carefully described, in which four critical switching wavelengths are observed. Remarkably, the quadruple LD conversion shows a significant wavelength-dependent behavior, allowing us to pinpoint five wavelength bands, 200-239 nm, 239-259 nm, 259-469 nm, 469-546 nm, and 546-700 nm, for a wavelength-selective approach to photodetectors. In addition, the polarized photoresponse under 532 nm was realized with an anisotropy factor of ∼1.51 and further illustrated the in-plane anisotropy. Raman spectroscopy of PdPS flakes also shows strong phonon anisotropy. The unique wavelength-selective property shows great potential for the miniaturization and integration of photodetectors.

3.
ACS Nano ; 16(5): 7745-7754, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35499232

ABSTRACT

2D material (2DM) based photodetectors with broadband photoresponse are of great value for a vast number of applications such as multiwavelength photodetection, imaging, and night vision. However, compared with traditional photodetectors based on bulk material, the relatively slow speed performance of 2DM based photodetectors hinders their practical applications. Herein, a submicrosecond-response photodetector based on ternary telluride InSiTe3 with trigonal symmetry and layered structure was demonstrated in this study. The InSiTe3 based photodetectors exhibit an ultrafast photoresponse (545-576 ns) and broadband detection capabilities from the ultraviolet (UV) to the near-infrared (NIR) optical communication region (365-1310 nm). Besides, the photodetector presents an outstanding reversible and stable photoresponse in which the response performance remains consistent within 200 000 cycles of switch operation. These significant findings suggest that InSiTe3 can be a promising candidate for constructing fast response broadband 2DM based optoelectronic devices.

4.
Adv Mater ; 34(7): e2106041, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34865248

ABSTRACT

Encapsulation is critical for devices to guarantee their stability and reliability. It becomes an even more essential requirement for devices based on 2D materials with atomic thinness and far inferior stability compared to their bulk counterparts. Here a general van der Waals (vdW) encapsulation method for 2D materials using Sb2 O3 layer of inorganic molecular crystal fabricated via thermal evaporation deposition is reported. It is demonstrated that such a scalable encapsulation method not only maintains the intrinsic properties of typical air-susceptible 2D materials due to their vdW interactions but also remarkably improves their environmental stability. Specifically, the encapsulated black phosphorus (BP) exhibits greatly enhanced structural stability of over 80 days and more sustaining-electrical properties of 19 days, while the bare BP undergoes degradation within hours. Moreover, the encapsulation layer can be facilely removed by sublimation in vacuum without damaging the underlying materials. This scalable encapsulation method shows a promising pathway to effectively enhance the environmental stability of 2D materials, which may further boost their practical application in novel (opto)electronic devices.

5.
J Phys Chem Lett ; 12(50): 11998-12004, 2021 Dec 23.
Article in English | MEDLINE | ID: mdl-34890200

ABSTRACT

Recent studies have revealed that the interlayer interaction in two-dimensional (2D) layered materials is not simply of van der Waals character but could coexist with quasi-bonding character. Herein, we classify the interlayer quasi-bonding interactions into two main categories (I: homo-occupancy interaction; II: hetero-occupancy interaction) according to the occupancy of the involved energy bands near the Fermi level. We then investigate the quasi-bonding-interaction-induced band structure evolution of several representative 2D materials based on density functional theory calculations. Further calculations confirm that this classification is applicable to generic 2D layered materials and provide a unified understanding of the total strength of interlayer interaction, which is a synergetic effect of the van der Waals attraction and the quasi-bonding interaction. The latter is stabilizing in main category II and destabilizing in main category I. Thus, the total interlayer interaction strength is relatively stronger in category II and weaker in category I.

6.
Research (Wash D C) ; 2021: 1904839, 2021.
Article in English | MEDLINE | ID: mdl-33937863

ABSTRACT

Negative Poisson's ratio (NPR) materials are functional and mechanical metamaterials that shrink (expand) longitudinally after being compressed (stretched) laterally. By using first-principles calculations, we found that Poisson's ratio can be tuned from near zero to negative by different stacking modes in van der Waals (vdW) graphene/hexagonal boron nitride (G/h-BN) superlattice. We attribute the NPR effect to the interaction of p z orbitals between the interfacial layers. Furthermore, a parameter calculated by analyzing the electronic band structure, namely, distance-dependent hopping integral, is used to describe the intensity of this interaction. We believe that this mechanism is not only applicable to G/h-BN superlattice but can also explain and predict the NPR effect in other vdW layered superlattices. Therefore, the NPR phenomenon, which was relatively rare in 3D and 2D materials, can be realized in the vdW superlattices by different stacking orders. The combinations of tunable NPRs with the excellent electrical/optical properties of 2D vdW superlattices will pave a novel avenue to a wide range of multifunctional applications.

7.
ACS Appl Mater Interfaces ; 11(49): 46327-46336, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31718125

ABSTRACT

Oxygen reduction reaction (ORR) is a key microscopic process in many electrochemical applications of materials, where the requirements of their ORR performances may vary strikingly, for example, during the uses of MoS2 as an electrocatalyst and anticorrosion/lubricating coating in aqueous/humid environments, ORR should be activated and inhibited, respectively. To reveal a complete ORR profile of MoS2, using first-principles calculations, we examine the stabilities of various possible zero-dimensional point defects on the surface and one-dimensional edge defects and comprehensively explore the ORR activities on pristine MoS2 surface and those defects in acid/alkaline solutions. It is found that the ORRs on the pristine surface and surfaces with point defects always require large overpotentials (>1.0 V), indicating a defect-immune resistance of the planar MoS2 surface against the ORR. However, the ORR overpotentials on edge defects can reach as low as 0.66 V, corresponding to a relatively high activity close to that of the prototypical catalyst Pt (overpotential ∼0.45 V). Such contrasting ORR behaviors of point and edge defects are also understood in depth by analyzing the underlying thermodynamic and electronic-structure mechanisms. This work not only quantitatively explains the performances of MoS2 in both galvanic corrosion and electrochemical catalysis but also provides a useful structure-ORR map that can facilitate adapting the realistic MoS2 to versatile electrochemical applications.

8.
J Phys Condens Matter ; 31(39): 395501, 2019 Oct 02.
Article in English | MEDLINE | ID: mdl-31207586

ABSTRACT

Discovering highly in-plane anisotropic two-dimensional (2D) semiconductors with multiple superior properties (good stability, widely tunable bandgap and high mobility) are of great interest for fundamental studies and for developments of novel (opto)electronic devices. By means of state-of-the-art first-principles calculations, herein we present a thorough investigation on the stability, electronic properties and promising applications of previously unexplored 2D semiconductors-gold-selenium (ß-AuSe) with strong in-plane anisotropy, whose layered bulk counterpart was synthesized fifty years ago. We show that they have stable structures, widely tunable bandgap varying from 1.66 eV in monolayer to 0.70 eV in five-layer, strong light absorption coefficient (~105 cm-1) within the whole visible light range, and high/ultrahigh carrier mobility (103-105 cm2 V -1 s -1). More importantly, they show highly in-pane anisotropic behaviors in absorption coefficients, photoconductance and carrier mobility. Especially, the anisotropic ratio of carrier mobility is much higher than the literature reported ones. The above findings show that the in-plane anisotropic 2D ß-AuSe are promising candidates for developing polarization-sensitive photodetectors, synaptic devices and micro digital inverters based on multiple superior properties and highly anisotropic behaviors. Besides, few-layer ß-AuSe systems can serve as channel materials in field-effect transistors with high mobility or be applied in solar cells with strong light absorption. Our findings demonstrate that few-layer 2D ß-AuSe have great potential for multifunctional applications and thus stimulate immediately experimental interests.

9.
J Phys Condens Matter ; 30(47): 475702, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30378570

ABSTRACT

Two-dimensional (2D) semiconductors SnP3 are predicted, from first-principles calculations, to host moderate band gaps (0.72 eV for monolayer and 1.07 eV for bilayer), ultrahigh carrier mobility (∼104 cm2 V-1 s-1 for bilayer), strong absorption coefficients (∼105 cm-1) and good stability. Moreover, the band gap can be modulated from an indirect character into a direct one via strain engineering. For experimental accessibility, the calculated exfoliation energies of monolayer and bilayer SnP3 are smaller than those of the common arsenic-type honeycomb structures GeP3 and InP3. More importantly, a semiconductor-to-metal transition is discovered with the layer number N > 2. We demonstrate, in remarkable contrast to the previous understandings, that such phase transition is largely driven by the correlation between lone-pair electrons of interlayer Sn and P atoms. This mechanism is universal for analogues phase transitions in arsenic-type honeycomb structures (GeP3, InP3 and SnP3).

10.
Adv Mater ; 30(50): e1804541, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30318655

ABSTRACT

Due to the intriguing anisotropic optical and electrical properties, low-symmetry 2D materials are attracting a lot of interest both for fundamental studies and fabricating novel electronic and optoelectronic devices. Identifying new promising low-symmetry 2D materials will be rewarding toward the evolution of nanoelectronics and nano-optoelectronics. In this work, germanium diarsenide (GeAs2 ), a group IV-V semiconductor with novel low-symmetry puckered structure, is introduced as a favorable highly anisotropic 2D material into the rapidly growing 2D family. The structural, vibrational, electrical, and optical in-plane anisotropy of GeAs2 is systematically investigated both theoretically and experimentally, combined with thickness-dependent studies. Polarization-sensitive photodetectors based on few-layer GeAs2 exhibit highly anisotropic photodetection behavior with lineally dichroic ratio up to ≈2. This work on GeAs2 will excite interests in the less exploited regime of group IV-V compounds.

11.
Adv Mater ; 30(14): e1706771, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29479747

ABSTRACT

Germanium phosphide (GeP), a new member of the Group IV-Group V compounds, is introduced into the fast growing 2D family with experimental and theoretical demonstration of strong anisotropic physical properties. The indirect band gap of GeP can be drastically tuned from 1.68 eV for monolayer to 0.51 eV for bulk, with highly anisotropic dispersions of band structures. Thin GeP shows strong anisotropy of phonon vibrations. Moreover, photodetectors based on GeP flakes show highly anisotropic behavior with anisotropic factors of 1.52 and 1.83 for conductance and photoresponsivity, respectively. This work lays the foundation and ignites future research interests in Group IV-Group V compound 2D materials.

12.
ACS Nano ; 11(10): 10264-10272, 2017 10 24.
Article in English | MEDLINE | ID: mdl-28901748

ABSTRACT

An interesting in-plane anisotropic layered dimetal chalcogenide Ta2NiS5 is introduced, and the optical and electrical properties with respect to its in-plane anisotropy are systematically studied. The Raman vibration modes have been identified by Raman spectra measurements combined with calculations of phonon-related properties. Importantly, the Ta2NiS5 flakes exhibit strong anisotropic Raman response under the angle-resolved polarized Raman spectroscopy measurements. We found that Raman intensities of the Ag mode not only depend on rotation angle but are also related to the sample thickness. In contrast, the infrared absorption with light polarized along the a axis direction is always larger than that in the c axis direction regardless of thickness under the polarization-resolved infrared spectroscopy measurements. Remarkably, the first-principles calculations combined with angle-resolved conductance measurements indicate strong anisotropic conductivity of Ta2NiS5. Our results not only prove Ta2NiS5 is a promising in-plane anisotropic 2D material but also provide an interesting platform for future functionalized electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...