Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Front Cell Dev Biol ; 12: 1380785, 2024.
Article in English | MEDLINE | ID: mdl-38872932

ABSTRACT

Multilineage-differentiating stress-enduring (Muse) cells are a type of pluripotent cell with unique characteristics such as non-tumorigenic and pluripotent differentiation ability. After homing, Muse cells spontaneously differentiate into tissue component cells and supplement damaged/lost cells to participate in tissue repair. Importantly, Muse cells can survive in injured tissue for an extended period, stabilizing and promoting tissue repair. In addition, it has been confirmed that injection of exogenous Muse cells exerts anti-inflammatory, anti-apoptosis, anti-fibrosis, immunomodulatory, and paracrine protective effects in vivo. The discovery of Muse cells is an important breakthrough in the field of regenerative medicine. The article provides a comprehensive review of the characteristics, sources, and potential mechanisms of Muse cells for tissue repair and regeneration. This review serves as a foundation for the further utilization of Muse cells as a key clinical tool in regenerative medicine.

2.
J Chromatogr A ; 1710: 464408, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37804579

ABSTRACT

In the present study, a comprehensive strategy integrating affinity ultrafiltration high-performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UF-HPLC-Q-TOF-MS), in silico molecular docking and bioassays was established to rapidly screen natural SOD activators from traditional Chinese medicines. As illustrative case studies, Schisandra chinensis, Fructus cnidii and Radix ophiopogonis were chosen to develop and verify the strategy. The HPLC-Q-TOF-MS was used to identify the compounds in comparison with reference standards and literature data. A total of eight compounds, including four biphenyl-cyclooctene ligands from Schisandra chinensis and four coumarins from Fructus cnidii, were found to potentially increase SOD activities. No ligands were found in the extract of Radix ophiopogonis. Then, in silico molecular docking was performed to investigate the binding site and binding affinity of the candidates on SOD. Compared to the nonspecific ligands screened from the extract, the specific ligands presented stronger binding affinities. In addition, the activity and kinetic parameters of the SOD-ligand were investigated through an improved pyrogallol autoxidation method. Gomisin J and xanthotoxin showed a stronger ability to increase SOD activities. The present study indicated that combining UF-HPLC-Q-TOF-MS and in silico molecular docking offers a powerful and meaningful tool to rapidly screen SOD activators from traditional Chinese medicines.


Subject(s)
Drugs, Chinese Herbal , Molecular Docking Simulation , Drugs, Chinese Herbal/chemistry , Ultrafiltration/methods , Chromatography, High Pressure Liquid/methods , Superoxide Dismutase
3.
Zhongguo Zhong Yao Za Zhi ; 48(13): 3602-3611, 2023 Jul.
Article in Chinese | MEDLINE | ID: mdl-37474993

ABSTRACT

Rheumatoid arthritis(RA), a chronic autoimmune disease, is featured by persistent joint inflammation. The development of RA is associated with the disturbance of endogenous metabolites and intestinal microbiota. Gardeniae Fructus(GF), one of the commonly used medicinal food in China, is usually prescribed for the prevention and treatment of jaundice, inflammation, ache, fever, and skin ulcers. GF exerts an effect on ameliorating RA, the mechanism of which remains to be studied. In this study, ultra-perfor-mance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)-based serum non-target metabolomics and 16S rDNA high-throughput sequencing were employed to elucidate the mechanism of GF in ameliorating RA induced by complete Freund's adjuvant in rats. The results showed that GF alleviated the pathological conditions in adjuvant arthritis(AA) rats. The low-and high-dose GF lo-wered the serum levels of interleukin(IL)-6, tumor necrosis factor-α(TNF-α), IL-1ß, and prostaglandin E2 in the rats(P<0.05, P<0.01). Pathways involved in metabolomics were mainly α-linolenic acid metabolism and glycerophospholipid metabolism. The results of 16S rDNA sequencing showed that the Streptococcus, Facklamia, Klebsiella, Enterococcus, and Kosakonia were the critical gut microorganisms for GF to treat AA in rats. Spearman correlation analysis showed that the three differential metabolites PE-NMe[18:1(9Z)/20:0], PC[20:1(11Z)/18:3(6Z,9Z,12Z)], and PC[20:0/18:4(6Z,9Z,12Z,15Z)] were correlated with the differential bacteria. In conclusion, GF may ameliorate RA by regulating the composition of intestinal microbiota, α-linolenic acid metabolism, and glycerophospholipid metabolism. The findings provide new ideas and data for elucidating the mechanism of GF in relieving RA.


Subject(s)
Arthritis, Rheumatoid , Gardenia , Gastrointestinal Microbiome , Rats , Animals , Chromatography, Liquid , Tandem Mass Spectrometry , alpha-Linolenic Acid , Metabolomics/methods , Arthritis, Rheumatoid/drug therapy , Inflammation , Glycerophospholipids
4.
Int J Mol Sci ; 24(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37511351

ABSTRACT

The development of regenerative medicine provides new options for the treatment of end-stage liver diseases. Stem cells, such as bone marrow mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells (iPSCs), are effective tools for tissue repair in regenerative medicine. iPSCs are an appropriate source of hepatocytes for the treatment of liver disease due to their unlimited multiplication capacity, their coverage of the entire range of genetics required to simulate human disease, and their evasion of ethical implications. iPSCs have the ability to gradually produce hepatocyte-like cells (HLCs) with homologous phenotypes and physiological functions. However, how to induce iPSCs to differentiate into HLCs efficiently and accurately is still a hot topic. This review describes the existing approaches for inducing the differentiation of iPSCs into HLCs, as well as some challenges faced, and summarizes various parameters for determining the quality and functionality of HLCs. Furthermore, the application of iPSCs for in vitro hepatoprotective drug screening and modeling of liver disease is discussed. In conclusion, iPSCs will be a dependable source of cells for stem-cell therapy to treat end-stage liver disease and are anticipated to facilitate individualized treatment for liver disease in the future.


Subject(s)
Induced Pluripotent Stem Cells , Liver Diseases , Pluripotent Stem Cells , Humans , Hepatocytes , Cell Differentiation , Liver Diseases/therapy
5.
J Ethnopharmacol ; 317: 116854, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37393029

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Spatholobi caulis (SC), the dried vine stem of Spatholobus suberectus Dunn, is known as Ji Xue Teng in China, and has long been used as traditional Chinese medicine (TCM) to treat anaemia, menstrual abnormalities, rheumatoid arthritis, purpura, etc. AIM OF THE REVIEW: The aim of this review is to provide a systematic and updated summary of the traditional uses, chemical constituents, biological activities and clinical applications of SC. In addition, several suggestions for future research on SC are also proposed. MATERIALS AND METHODS: Extensive information and data on SC were obtained from electronic databases (ScienceDirect, Web of Science, PubMed, CNKI, Baidu Scholar, Google Scholar, ResearchGate, SpringerLink and Wiley Online). Additional information was collected from Ph.D. and MSc dissertations, published books, and classic material medica. RESULTS: To date, phytochemical studies have revealed that approximately 243 chemical ingredients have been isolated from SC and identified, including flavonoids, glycosides, phenolic acids, phenylpropanoids, volatile oils, sesquiterpenoids and other compounds. Many studies have indicated that extracts and pure constituents from SC possess a wide spectrum of in vitro and in vivo pharmacological effects, such as anti-tumour, haematopoietic, anti-inflammatory, antidiabetic, antioxidant, antiviral and antibacterial effects, as well as other activities. SC could be applied to the treatment of leukopenia, aplastic anemic, endometriosis, etc. according to the clinical reports. The traditional efficacies of SC is due to the biological functions of its chemical compounds, especially flavonoids. However, research investigating the toxicological effects of SC is relatively limited. CONCLUSIONS: SC is widely used in TCM formulae and its some traditional efficacies has been confirmed by extensive recent pharmacological and clinical studies. Most the biological activities of the SC may be attributed to flavonoids. However, in-depth studies on the molecular mechanisms of the effective ingredients and extracts of SC are limited. Further systematic studies focusing on pharmacokinetics, toxicology and quality control are needed to ensure the effective and safe application of SC.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Ethnopharmacology , Phytotherapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Flavonoids , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry
6.
Molecules ; 28(9)2023 May 01.
Article in English | MEDLINE | ID: mdl-37175256

ABSTRACT

Herpetin, an active compound derived from the seeds of Herpetospermum caudigerum Wall., is a traditional Tibetan herbal medicine that is used for the treatment of hepatobiliary diseases. The aim of this study was to evaluate the stimulant effect of herpetin on bone marrow mesenchymal stem cells (BMSCs) to improve acute liver injury (ALI). In vitro results showed that herpetin treatment enhanced expression of the liver-specific proteins alpha-fetoprotein, albumin, and cytokeratin 18; increased cytochrome P450 family 3 subfamily a member 4 activity; and increased the glycogen-storage capacity of BMSCs. Mice with ALI induced by carbon tetrachloride (CCl4) were treated with a combination of BMSCs by tail-vein injection and herpetin by intraperitoneal injection. Hematoxylin and eosin staining and serum biochemical index detection showed that the liver function of ALI mice improved after administration of herpetin combined with BMSCs. Western blotting results suggested that the stromal cell-derived factor-1/C-X-C motif chemokine receptor 4 axis and the Wnt/ß-catenin pathway in the liver tissue were activated after treatment with herpetin and BMSCs. Therefore, herpetin is a promising BMSC induction agent, and coadministration of herpetin and BMSCs may affect the treatment of ALI.


Subject(s)
Benzofurans , Mesenchymal Stem Cells , Mice , Animals , Carbon Tetrachloride/toxicity , Liver , Benzofurans/metabolism , Mesenchymal Stem Cells/metabolism , Bone Marrow Cells
7.
J Ethnopharmacol ; 305: 116082, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36581163

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Terminalia bellirica (Gaertn.) Roxb. (TB) is a traditional Tibetan medicine used to treat hepatobiliary diseases. However, modern pharmacological evidence of the activities and potential mechanisms of TB against nonalcoholic fatty liver disease (NAFLD) are still unknown. AIM OF THE STUDY: This study aimed to evaluate the anti-NAFLD effect of ethanol extract of TB (ETB) and investigate whether its ameliorative effects are associated with the regulation of intestinal microecology. MATERIALS AND METHODS: In this study, the curative effects of ETB on NAFLD were evaluated in mice fed a choline-deficient, L-amino acid defined, high fat diet (CDAHFD). Biochemical markers and hepatic histological alterations were detected. Gut microbiota and faecal metabolites were analyzed by 16S rRNA gene sequencing and liquid chromatograph mass spectrometer (LC‒MS) profiling. RESULTS: The results showed that oral treatment with middle- and high-dose ETB significantly improved features of NAFLD, reducing the levels of TG, LDL-C, ALT and AST, and increasing the level of HDL-C. Liver histopathologic examination demonstrated that ETB attenuated lipid accumulation and hepatocellular necrosis. ETB treatment restored the structural disturbances of gut microbiota induced by CDAHFD, reduced the levels of Intestinimonas, Lachnoclostridium, and Lachnospirace-ae_FCS020_group, and increased Akkermansia and Bifidobacterium. Moreover, untargeted metabolomics analysis revealed that ETB could restore the disrupted taurine and hypotaurine metabolism, glycine, serine and threonine metabolism, and glutathione metabolism of the intestinal bacterial community in NAFLD mice. CONCLUSIONS: ETB was effective in ameliorating the NAFLD, possibly by remodelling the gut microbiota composition and modulating the faecal metabolism metabolites of the host, highlighting the potential of TB as a resource for the development of anti-NAFLD drugs.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Terminalia , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Ethanol/pharmacology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Liver , Diet, High-Fat , Mice, Inbred C57BL
8.
J Ethnopharmacol ; 301: 115847, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36272491

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ershiwuwei Zhenzhu Pill (EZP), a representative and classic formula in Tibetan medicine, is commonly used in the treatment of various cerebrovascular diseases, including ischemic stroke (IS). Nevertheless, their efficacy and potential mechanism in treating IS have yet to be investigated. AIM OF THE STUDY: This study aimed to investigate the potential mechanisms of EZP in the treatment of IS based on network pharmacology and experimental verification. MATERIALS AND METHODS: The chemical profile of EZP was characterized using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The targets related to the compounds in EZP were predicted by the Swiss Target Prediction and Target Net platform, and targets of IS were collected from the Gene Cards and OMIM databases. Subsequently, a protein-protein interaction (PPI) network of targets was constructed and analyzed by the STRING database and Cytoscape software, version 3.7.1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed, and an ingredient-target-pathway network was constructed. Ultimately, the middle cerebral artery occlusion (MCAO) model was established to evaluate the anti-IS effects of EZP by detecting the neurological deficit score, HE, Nissl and TCC staining, and inflammatory factors, and the expression of key protein targets was detected by western blotting. RESULTS: A total of 129 components were identified in EZP. Network pharmacology revealed 3136 compound targets and 2826 disease-related targets, and 412 overlapping proteins were obtained as potential therapeutic targets. The PPI network results showed that 6 key targets (AKT1, SRC, VEGFA, TP53, TNF and EGFR) were core targets of EZP in the treatment of IS. Western blotting demonstrated that the expression levels of AKT1, VEGFA, TP53, SRC, TNF and EGFR in the brain tissue of MCAO rats were significantly changed after treatment with EZP compared to the model group. CONCLUSIONS: EZP ameliorated IS in MCAO rats. The underlying mechanism might be associated with inhibiting inflammation and apoptosis, promoting angiogenesis and protecting neurons by regulating multiple targets and pathways.


Subject(s)
Drugs, Chinese Herbal , Ischemic Stroke , Animals , Rats , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , ErbB Receptors , Ischemic Stroke/drug therapy , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Medicine, Tibetan Traditional
9.
Front Pharmacol ; 13: 989995, 2022.
Article in English | MEDLINE | ID: mdl-36313326

ABSTRACT

Phyllanthus emblica (PE), a traditional multiethnic herbal medicine, is commonly applied to treat liver diseases. Our previous study demonstrated that aqueous extract of PE (AEPE) could alleviate carbon tetrachloride (CCl4)-induced liver fibrosis in vivo, but the underlying molecular mechanisms are still unclear. The present study was undertaken to clarify the multitarget mechanisms of PE in treating liver fibrosis by proteomics clues. A CCl4-induced liver fibrosis rat model was established. The anti-liver fibrosis effects of chemical fractions from AEPE were evaluated by serum biochemical indicators and pathological staining. Additionally, tandem mass tag (TMT) - based quantitative proteomics technology was used to detect the hepatic differentially expressed proteins (DEPs). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, gene ontology (GO) enrichment and protein-protein interaction (PPI) network were used to perform bioinformatics analysis of DEPs. Western blot analysis was used to verify the key potential targets regulated by the effective fraction of AEPE. The low-molecular-weight fraction of AEPE (LWPE) was determined to be the optimal anti-liver fibrosis active fraction, that could significantly improve ALT, AST, HA, Col IV, PCIII, LN, Hyp levels and reduce the pathological fibrotic lesion of liver tissue in model rats. A total of 195 DEPs were screened after LWPE intervention. GO analysis showed that the DEPs were related mostly to extracellular matrix organization, actin binding, and extracellular exosomes. KEGG pathway analysis showed that DEPs are mainly related to ECM-receptor interactions, focal adhesion and PI3K-Akt signaling pathway. Combined with the GO, KEGG and Western blot results, COL1A2, ITGAV, TLR2, ACE, and PDGFRB may be potential targets for PE treatment of liver fibrosis. In conclusion, LWPE exerts therapeutic effects through multiple pathways and multiple targets regulation in the treatment of liver fibrosis. This study may provide proteomics clues for the continuation of research on liver fibrosis treatment with PE.

10.
Int J Mol Sci ; 23(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36142881

ABSTRACT

Liver disease has become a major global health and economic burden due to its broad spectrum of diseases, multiple causes and difficult treatment. Most liver diseases progress to end-stage liver disease, which has a large amount of matrix deposition that makes it difficult for the liver and hepatocytes to regenerate. Liver transplantation is the only treatment for end-stage liver disease, but the shortage of suitable organs, expensive treatment costs and surgical complications greatly reduce patient survival rates. Therefore, there is an urgent need for an effective treatment modality. Cell-free therapy has become a research hotspot in the field of regenerative medicine. Mesenchymal stem cell (MSC)-derived exosomes have regulatory properties and transport functional "cargo" through physiological barriers to target cells to exert communication and regulatory activities. These exosomes also have little tumorigenic risk. MSC-derived exosomes promote hepatocyte proliferation and repair damaged liver tissue by participating in intercellular communication and regulating signal transduction, which supports their promise as a new strategy for the treatment of liver diseases. This paper reviews the physiological functions of exosomes and highlights the physiological changes and alterations in signaling pathways related to MSC-derived exosomes for the treatment of liver diseases in some relevant clinical studies. We also summarize the advantages of exosomes as drug delivery vehicles and discuss the challenges of exosome treatment of liver diseases in the future.


Subject(s)
End Stage Liver Disease , Exosomes , Liver Diseases , Mesenchymal Stem Cells , Exosomes/metabolism , Humans , Liver Diseases/metabolism , Liver Diseases/therapy , Mesenchymal Stem Cells/metabolism , Regenerative Medicine
11.
Front Pharmacol ; 13: 893561, 2022.
Article in English | MEDLINE | ID: mdl-35959433

ABSTRACT

Accumulating evidence suggests that dysregulation of the intestinal flora potentially contributes to the occurrence and development of nonalcoholic fatty liver disease (NAFLD). Phyllanthus emblica (PE), an edible and medicinal natural resource, exerts excellent effects on ameliorating NAFLD, but the potential mechanism remains unclear. In the present study, a mouse NAFLD model was established by administering a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD). The protective effects of the aqueous extract of PE (AEPE) on the gut microbiota and fecal metabolites in NAFLD mice were detected by performing 16S rRNA gene sequencing and untargeted metabolomics. The administration of middle- and high-dose AEPE decreased the levels of ALT, AST, LDL-C, TG, and Hyp and increased HDL-C levels in CDAHFD-fed mice. Hematoxylin-eosin (H&E), Oil Red O, and Masson's trichrome staining indicated that AEPE treatment attenuated hepatic steatosis and fibrotic lesions. Moreover, the disordered intestinal microflora was remodeled by AEPE, including decreases in the abundance of Peptostreptococcaceae, Faecalibaculum, and Romboutsia. The untargeted metabolomics analysis showed that AEPE restored the disturbed glutathione metabolism, tryptophan metabolism, taurine and hypotaurine metabolism, and primary bile acid biosynthesis of the gut bacterial community in NAFLD mice, which strongly correlated with hepatic steatosis and fibrosis. Collectively, AEPE potentially ameliorates NAFLD induced by a CDAHFD through a mechanism associated with its modulatory effects on the gut microbiota and microbial metabolism.

12.
Zhongguo Zhong Yao Za Zhi ; 47(8): 2028-2037, 2022 Apr.
Article in Chinese | MEDLINE | ID: mdl-35531718

ABSTRACT

Precious Tibetan medicine formula is a characteristic type of medicine commonly used in the clinical treatment of central nervous system diseases. Through the summary of modern research on the precious Tibetan medicine formulas such as Ratnasampil, Ershiwuwei Zhenzhu Pills, Ershiwewei Shanhu Pills, and Ruyi Zhenbao Pills, it is found that they have obvious advantages in the treatment of stroke, Alzheimer's disease, epilepsy, angioneurotic headache, and vascular dementia. Modern pharmacological studies have shown that the mechanisms of precious Tibetan medicine formulas in improving central nervous system diseases are that they promote microcirculation of brain tissue, regulate the permeability of the blood-brain barrier, alleviate inflammation, relieve oxidative stress damage, and inhibit nerve cell apoptosis. This review summarizes the clinical and pharmacological studies on precious Tibetan medicine formulas in prevention and treatment of central nervous system diseases, aiming to provide a reference for future in-depth research and innovative discovery of Tibetan medicine against central nervous diseases.


Subject(s)
Central Nervous System Diseases , Stroke , Blood-Brain Barrier , Brain , Humans , Medicine, Tibetan Traditional , Stroke/drug therapy
13.
Zhongguo Zhong Yao Za Zhi ; 47(8): 2038-2048, 2022 Apr.
Article in Chinese | MEDLINE | ID: mdl-35531719

ABSTRACT

This study aimed to investigate the effect of Tibetan medicine Ershiwuwei Songshi Pills(ESP) on the intestinal flora of non-alcoholic steatohepatitis(NASH) mice. Forty-eight male C57 BL/6 mice were randomly divided into the control group, model(methionine-choline-deficient, MCD) group, high-(0.8 g·kg~(-1)), medium-(0.4 g·kg~(-1)), and low-dose(0.2 g·kg~(-1)) ESP groups, and pioglitazone(PGZ, 10 mg·kg~(-1)) group, with eight mice in each group. Mice in the control group were fed with normal diet, while those in the remaining five groups with MCD diet for five weeks for inducing NASH. During modeling, they were gavaged with the corresponding drugs. The changes in body mass, daily water intake, and daily food intake were recorded. At the end of the experiment, the liver tissues were collected and stained with hematoxylin-eosin(HE) for observing the pathological changes, followed by oil red O staining for observing fat accumulation in the liver. The levels of serum aspartate aminotransferase(AST) and alanine aminotransferase(ALT) and triglyceride(TG) in liver tissue were measured. The changes in intestinal flora of mice were determined using 16 S rRNA high-throughput sequencing technology. The results showed that compared with the model group, the high-, medium-and low-dose ESP groups and the PGZ group exhibited significantly lowered AST and ALT in serum and TG in liver tissues and alleviated hepatocellular steatosis and fat accumulation in the liver. As demonstrated by 16 S rRNA sequencing, the abundance index and diversity of intestinal flora decreased in the model group, while those increased in the ESP groups. Besides, the Firmicutes to Bacteroidetes ratio decreased at the phylum level. In the alteration of the composition of intestinal flora, ESP reduced the abundance of Erysipelotrichia and Faecalibaculum but increased the abundance of Desulfovibrionaceae, Rikenellaceae, Lachnospiraceae, and Ruminococcaceae. This study has revealed that ESP has a protective effect against NASH induced by MCD diet, which may be related to its regulation of the changes in intestinal flora, alteration of the composition of intestinal flora, and inhibition of the intestinal dysbiosis.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Animals , Disease Models, Animal , Liver , Male , Medicine, Tibetan Traditional , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy
14.
Zhongguo Zhong Yao Za Zhi ; 47(8): 2049-2055, 2022 Apr.
Article in Chinese | MEDLINE | ID: mdl-35531720

ABSTRACT

The present study investigated the mechanism of the Tibetan medicine Ershiwuwei Songshi Pills(ESP) against the liver injury induced by acetaminophen(APAP) in mice based on the kelch-like ECH-associated protein 1(Keap1)/nuclear transcription factor E2 related factor 2(Nrf2) and Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB) p65 signaling pathways. Kunming mice were randomly divided into a blank control group, a model group, an N-acetyl-L-cysteine(NAC) group, and high-(400 mg·kg~(-1)), medium-(200 mg·kg~(-1)), and low-dose(100 mg·kg~(-1)) ESP groups. After 14 days of continuous administration, except for those in the control group, the mice were intraperitoneally injected with 200 mg·kg~(-1) APAP. After 12 h, the serum and liver tissues of mice were collected. Hematoxylin-eosin(HE) staining was performed on pathological sections of the liver, and the levels of aspartate aminotransferase(AST) and alanine aminotransferase(ALT) in the serum and the levels of glutathione(GSH), malondialdehyde(MDA), superoxide dismutase(SOD), catalase(CAT), myeloperoxidase(MPO), and total antioxidant capacity(T-AOC) in liver tissue homogenate were detected to observe and analyze the protective effect of ESP on APAP-induced liver injury in mice. The serum levels of tumor necrosis factor-alpha(TNF-α), interleukin-1 beta(IL-1ß), and interleukin-6(IL-6) were determined by enzyme-linked immunosorbent assay(ELISA). The protein expression of Nrf2, Keap1, TLR4, and NF-κB p65 in the liver was determined by Western blot. Quantitative real-time was used to determine the mRNA expression of glutamate-cysteine ligase catalytic subunit(GCLC), glutamate-cysteine ligase regulatory subunit(GCLM), heme oxygenase-1(HO-1), and NAD(P)H dehydrogenase quinone 1(NQO-1) in the liver to explore the mechanism of ESP in improving APAP-induced liver damage in mice. As revealed by results, compared with the model group, the ESP groups showed improved liver pathological damage, decreased ALT and AST levels in the serum and MDA and MPO content in the liver, increased GSH, SOD, CAT, and T-AOC in the liver, reduced TNF-α and IL-6 levels in the serum, down-regulated expression of Keap1 in the liver cytoplasm and NF-κB p65 in the liver nucleus, up-regulated expression of Nrf2 in the liver nucleus, insignificant change in TLR4 expression, and elevated relative mRNA expression levels of antioxidant genes GCLC, GCLM, HO-1, and NQO-1. ESP can reduce the oxidative damage and inflammation caused by APAP, and the mechanism may be related to the Keap1/Nrf2 signaling pathway and the signal transduction factors on the TLR4/NF-κB p65 pathway.


Subject(s)
Acetaminophen , NF-E2-Related Factor 2 , Acetaminophen/toxicity , Animals , Antioxidants/pharmacology , Glutamate-Cysteine Ligase/metabolism , Glutamate-Cysteine Ligase/pharmacology , Glutathione , Interleukin-6/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Liver , Medicine, Tibetan Traditional , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , RNA, Messenger/metabolism , Signal Transduction , Superoxide Dismutase/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
15.
Zhongguo Zhong Yao Za Zhi ; 47(8): 2074-2081, 2022 Apr.
Article in Chinese | MEDLINE | ID: mdl-35531723

ABSTRACT

The present study investigated the mechanism of the Tibetan patent medicine Ershiwuwei Shanhu Pills(ESP) in alleviating Alzheimer's disease in mice via Akt/mTOR/GSK-3ß signaling pathway. BALB/c mice were randomly assigned into a blank control group, a model group, low(200 mg·kg~(-1)), medium(400 mg·kg~(-1)) and high(800 mg·kg~(-1)) dose groups of ESP, and donepezil hydrochloride group. Except the blank control group, the other groups were given 20 mg·kg~(-1) aluminum chloride by gavage and 120 mg·kg~(-1) D-galactose by intraperitoneal injection for 56 days to establish Alzheimer's disease model. Morris water maze was used to detect the learning and memory ability of mice. The level of p-tau protein in mouse hippocampus and the levels of superoxide dismutase(SOD), malondialdehyde(MDA), catalase(CAT), and total antioxidant capacity(T-AOC) in hippocampus and serum were detected. Hematoxylin-eosin staining and Nissl staining were performed for the pathological observation of whole brain in mice. TdT-mediated dUTP nick-end labeling(TUNEL) staining was employed for the observation of apoptosis in mouse cortex. Western blot was adopted to detect the protein levels of p-mTOR, p-Akt, and GSK-3ß in the hippocampus. Compared with the model group, the ESP groups showcased alleviated pathological damage of the whole brain, decreased TUNEL positive cells, reduced level of p-tau protein in hippocampus, and risen SOD, CAT, and T-AOC levels and declined MDA level in hippocampus and serum. Furthermore, the ESP groups had up-regulated protein levels of p-mTOR and p-Akt while down-regulated protein level of GSK-3ß in hippocampus. Therefore, ESP can alleviate the learning and memory decline and oxidative damage in mice with Alzheimer's disease induced by D-galactose combined with aluminum chloride, which may be related to Akt/mTOR/GSK-3ß signaling pathway.


Subject(s)
Alzheimer Disease , Aluminum Chloride/adverse effects , Alzheimer Disease/drug therapy , Animals , Galactose/adverse effects , Galactose/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Hippocampus/metabolism , Mice , Mice, Inbred BALB C , Plant Extracts , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Superoxide Dismutase/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , tau Proteins
16.
Zhongguo Zhong Yao Za Zhi ; 47(8): 2082-2089, 2022 Apr.
Article in Chinese | MEDLINE | ID: mdl-35531724

ABSTRACT

This study aims to investigate the mechanism of the Tibetan medicine Ershiwuwei Shanhu Pills(ESP) in improving scopolamine-induced learning and memory impairment in mice based on Keap1/Nrf2/HO-1 signaling pathway. ICR mice were randomized into blank group, model group, low-dose(200 mg·kg~(-1)), medium-dose(400 mg·kg~(-1)), and high-dose(800 mg·kg~(-1)) ESP groups, and donepezil hydrochloride group. The learning and memory impairment was induced in mice by intraperitoneal injection of scopola-mine. The learning and memory abilities of mice were detected by Morris water maze test, and the damage of hippocampal neurons and cortical neurons was detected based on Nissl staining. The expression of neuron specific nuclear protein(NeuN) in hippocampus and cortex of mice was determined by immunofluorescence assay, and the content of acetylcholine(Ach) and the activity of acetylcholines-terase(AchE) in hippocampus of mice by kits. Moreover, the content of superoxide dismutase(SOD), malondialdehyde(MDA), catalase(CAT), and total antioxidant capacity(T-AOC) in serum of mice was detected. The content of Kelch-like ECH-associated protein 1(Keap1), nuclear factor erythroid 2-related factor 2(Nrf2), and heme oxygenase 1(HO-1) in hippocampus was determined by Western blot. The results showed that there were significant differences in the trajectory map of mice among different groups in the behavioral experiment. Moreover, the latency of ESP groups decreased significantly compared with that in the model group. The hippocampal neurons in the high-dose ESP group were significantly more than those in the model group and the cortical neurons in the high-dose and medium-dose ESP groups were significantly more than those in the model group. The expression of NeuN in the model group was significantly decreased compared with that in the blank group, and the expression in the ESP groups was significantly higher than that in the model group. The AchE activity and MDA level were significantly decreased, and Ach content and levels of SOD, CAT, and T-AOC in the ESP groups were significantly increased in the ESP groups compared with those in the model group. The expression of Keap1 in the model group was significantly increased compared with that in the blank group, and the Keap1 expression increased insignificantly in ESP groups compared with that in the model group. The expression of Nrf2 and HO-1 was significantly lower in the model group than in the blank group, and the expression was significantly higher in the medium-dose ESP group than in the model group. In conclusion, ESP protected mice against the scopolamine-induced learning and memory impairment by regulating the Keap1/Nrf2/HO-1 signaling pathway.


Subject(s)
NF-E2-Related Factor 2 , Scopolamine , Animals , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Medicine, Tibetan Traditional , Mice , Mice, Inbred ICR , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Plant Extracts , Scopolamine/adverse effects , Signal Transduction , Superoxide Dismutase/metabolism
17.
Int J Nanomedicine ; 17: 1757-1781, 2022.
Article in English | MEDLINE | ID: mdl-35469174

ABSTRACT

Inflammation is a beneficial and physiological process, but there are a number of inflammatory diseases which have detrimental effects on the body. In addition, the drugs used to treat inflammation have toxic side effects when used over a long period of time. Mesenchymal stem cells (MSCs) are pluripotent stem cells that can be isolated from a variety of tissues and can be differentiate into diverse cell types under appropriate conditions. They also exhibit noteworthy anti-inflammatory properties, providing new options for the treatment of inflammatory diseases. The therapeutic potential of MSCs is currently being investigated for various inflammatory diseases, such as kidney injury, lung injury, osteoarthritis (OA), rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). MSCs can perform multiple functions, including immunomodulation, homing, and differentiation, to enable damaged tissues to form a balanced inflammatory and regenerative microenvironment under severe inflammatory conditions. In addition, accumulated evidence indicates that exosomes from extracellular vesicles of MSCs (MSC-Exos) play an extraordinary role, mainly by transferring their components to recipient cells. In this review, we summarize the mechanism and clinical trials of MSCs and MSC-Exos in various inflammatory diseases in detail, with a view to contributing to the treatment of MSCs and MSC-Exos in inflammatory diseases.


Subject(s)
Exosomes , Extracellular Vesicles , Mesenchymal Stem Cells , Exosomes/metabolism , Extracellular Vesicles/metabolism , Humans , Immunomodulation , Inflammation/metabolism , Inflammation/therapy
18.
J Ethnopharmacol ; 283: 114678, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34563614

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ophiopogonis Radix, the commonly used traditional Chinese medicine in clinic for treating cardiovascular diseases, is returned to the stomach, lung and heart meridian. It is reported to nourish yin, moisten lung and is used to treat heart yin deficiency syndromes and asthenia of heart and lung, which indicated that Ophiopogonis Radix may have a protective effect on heart disorders. Atherosclerosisis is an important process in the development of cardiovascular diseases and abnormal lipid deposition induced macrophage foam cells is its crucial foundation. Our previous study showed the extract of Ophiopogonis Radix (EOR) ameliorates atherosclerosis in vitro. However, it may protect against cardiovascular diseases through inhibiting macrophage foam cell formation and its potential effective components and mechanisms are still unclear. AIM OF THE STUDY: Our study aimed to investigate the effect of Ophiopogonis Radix on macrophage foam cell formation and its potential active constituents and mechanisms. MATERIALS AND METHODS: Ox-LDL induced macrophage cells were employed to evaluate the effect of Ophiopogonis Radix on macrophage foam cell formation. Then the potential active constituents inhibited formation of macrophage foam cells were screened by biospecific cell extraction and its underlying mechanisms were also explored by Western blot. RESULTS: The extract of Ophiopogonis Radix was found to significantly inhibit macrophage foam cell formation, evidenced by the decrease of TG and TC and Oil Red O staining analysis in macrophage cells, which indicated that EOR reduced the formation of macrophage foam cells. At the same time, EOR was showed to increase antioxidant capacity in macrophage cells. After treatment with EOR, two potential active components interacted with macrophage foam cells specifically were identified to inhibit macrophage foam cell formation including methylophiopogonanone A and methylophiopogonanone B. Methylophiopogonanone A was then proved to decrease the expression of CD36, Lox-1 and SREBP2, increase the expression of ABCA1 obviously, while the expression of ABCG1 and SREBP1 had no changes. CONCLUSIONS: In our study, Ophiopogonis Radix was found to protect against atherosclerosis through suppressing ox-LDL induced macrophage foam cell formation and two potential compounds were identified by biospecific cell extraction including methylophiopogonanone A and methylophiopogonanone B. Moreover, methylophiopogonanone A was proved to inhibit foam cells through reducing uptake, synthesis and increasing efflux, which may provide guidance and reference for application of Ophiopogonis Radix and investigation of the effective components of TCMs.


Subject(s)
Asparagaceae/chemistry , Cell Survival/drug effects , Foam Cells/drug effects , Macrophages, Peritoneal/drug effects , Phytotherapy , Plant Roots/chemistry , Animals , Male , Mice , Mice, Inbred ICR , Plant Extracts/chemistry , Plant Extracts/pharmacology
19.
ACS Appl Mater Interfaces ; 14(1): 307-323, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34968038

ABSTRACT

Mesangial cell (MC)-mediated glomerulonephritis is a frequent cause of end-stage renal disease, with immune inflammatory damage and fibrosis as its basic pathological processes. However, the treatment of glomerulonephritis remains challenging owing to limited drug accumulation and serious side effects. Hence, the specific codelivery of "anti-inflammatory/antifibrosis" drugs to the glomerular MC region is expected to yield better therapeutic effects. In this study, liposome-nanoparticle hybrids (Au-LNHy) were formed by coating the surface of gold nanoparticles with a phospholipid bilayer; the Au-LNHys formed were comodified with PEG and α8 integrin antibodies to obtain gold nanoparticle immunoliposomes (Au-ILs). Next, the Au-ILs were loaded with dexamethasone and TGFß1 siRNA to obtain DXMS/siRNA@Au-ILs. Our results showed that the functionalized nanoparticles had a core-shell structure, a uniform and suitable particle size, low cytotoxicity, and good MC entry, and lysosomal escape abilities. The nanoparticles were found to exhibit enhanced retention in glomerular MCs due to anti-α8 integrin antibody mediation. In vivo and in vitro pharmacodynamic studies showed the enhanced efficacy of DXMS/siRNA@Au-ILs modified with α8 integrin antibodies in the treatment of glomerulonephritis. In addition, DXMS/siRNA@Au-ILs were capable of effectively reducing the expression levels of TNF-α, TGF-ß1, and other cytokines, thereby improving pathological inflammatory and fibrotic conditions in the kidney, and significantly mediating the dual regulation of inflammation and fibrosis. In summary, our results demonstrated that effectively targeting the MCs of the glomerulus for drug delivery can inhibit local inflammation and fibrosis and produce better therapeutic effects, providing a new strategy and promising therapeutic approach for the development of targeted therapies for glomerular diseases.


Subject(s)
Dexamethasone/therapeutic use , Glomerulonephritis/drug therapy , Gold/therapeutic use , Metal Nanoparticles/chemistry , RNA, Small Interfering/therapeutic use , Transforming Growth Factor beta1/chemistry , Animals , Cells, Cultured , Dexamethasone/chemistry , Gold/chemistry , Humans , Liposomes/chemistry , Male , Materials Testing , Mice , Mice, Inbred Strains , RNA, Small Interfering/chemistry
20.
Article in English | MEDLINE | ID: mdl-34712342

ABSTRACT

Liver fibrosis is a pathological variation caused by almost all chronic liver injuries. As an edible and medicinal natural resource, Phyllanthus emblica (PE) has been reported to possess hepatoprotective, antioxidant, and anti-inflammatory activities and may have an ameliorating effect on hepatic fibrosis. To investigate the protective effect of the aqueous extract of PE (AEPE) against liver fibrosis and to uncover its related mechanisms, the chemical profile of AEPE was characterized by high performance liquid chromatography (HPLC) and sulfuric acid-phenol method. Ameliorative effects of different doses of AEPE were investigated in carbon-tetrachloride- (CCl4-) induced liver fibrosis rats by analyzing biochemical markers, morphologic pathology, and related proteins expression in liver tissue. The results indicated that AEPE (1.8, 3.6 g/kg) could significantly reduce levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), collagen IV (Col IV), type III precollagen (PCIII), hyaluronic acid (HA), laminin (LN), malondialdehyde (MDA), nitric oxide (NO), protein carbonyl (PC), tumor necrosis factor-α(TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and hydroxyproline (Hyp) and increase the levels of superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT). Hematoxylin-eosin (H&E), Sirius red, and Masson staining showed AEPE-treated improved fibrotic lesions and inflammatory cell infiltration. Meanwhile, AEPE treatment also significantly downregulates the expression of α-smooth muscle actin (α-SMA) and transforming growth factor-ß1 (TGF-ß1) in the liver tissue and serum, respectively. In conclusion, AEPE possesses curative efficacy against liver fibrosis through its antioxidant, anti-inflammatory, and antifibrotic effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...