Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 722: 150074, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38805785

ABSTRACT

Genetic knockout and pharmaceutical inhibition of the NLRP3 inflammasome enhances the extinction of contextual fear memory, which is attributed to its role in neuronal and synaptic dysregulation, concurrent with neurotransmitter function disturbances. This study aimed to determine whether NLRP3 plays a role in generalizing fear via the inflammatory axis. We established the NLRP3 KO mice model, followed by behavioral and biochemical analyses. The NLRP3 KO mice displayed impaired fear generalization, lower neuroinflammation levels, and dysregulated neurotransmitter function. Additionally, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, but not the inhibition of NMDA or 5-HT2C receptors, resulted in fear generalization in NLRP3 KO mice because TAT-GluA2 3Y, but not SB242084 and D-cycloserine, treated blocked NLRP3 deprivation effects on fear generalization. Thus, global knockout of NLRP3 is associated with aberrant fear generalization, possibly through AMPA receptor signaling.


Subject(s)
Fear , NLR Family, Pyrin Domain-Containing 3 Protein , Receptors, AMPA , Animals , Male , Mice , Fear/physiology , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , Receptors, AMPA/metabolism , Receptors, AMPA/genetics
2.
Transl Psychiatry ; 13(1): 352, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37978167

ABSTRACT

The translational defect has emerged as a common feature of neurological disorders. Studies have suggested that alterations between opposing and balanced synaptic protein synthesis and turnover processes could lead to synaptic abnormalities, followed by depressive symptoms. Further studies link this phenomenon with eIF4E and TrkB/BDNF signaling. However, the interplay between the eIF4E and TrkB/BDNF signaling in the presence of neuroinflammation is yet to be explored. To illuminate the role of eIF4E activities within LPS-induced neuroinflammation and depression symptomology, we applied animal behavioral, biochemical, and pharmacological approaches. In addition, we sought to determine whether eIF4E dysregulated activities correlate with synaptic protein loss via the TrkB/BDNF pathway. Our results showed that LPS administration induced depressive-like behaviors, accompanied by neuroinflammation, reduced spine numbers, and synaptic protein dysregulation. Concurrently, LPS treatment enhanced eIF4E phosphorylation and TrkB/BDNF signaling defects. However, eFT508 treatment rescued the LPS-elicited neuroinflammation and depressive behaviors, as well as altered eIF4E phosphorylation, synaptic protein expression, and TrkB/BDNF signaling. The causal relation of eIF4E with BDNF signaling was further explored with TrkB antagonist K252a, which could reverse the effects of eFT508, validating the interplay between the eIF4E and TrkB/BDNF signaling in regulating depressive behaviors associated with neuroinflammation via synaptic protein translational regulation. In conclusion, our results support the involvement of eIF4E-associated translational dysregulation in synaptic protein loss via TrkB/BDNF signaling, eventually leading to depressiven-like behaviors upon inflammation-linked stress.


Subject(s)
Antidepressive Agents , Lipopolysaccharides , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Lipopolysaccharides/metabolism , Phosphorylation , Neuroinflammatory Diseases , Brain-Derived Neurotrophic Factor/metabolism , Receptor, trkB/metabolism
3.
Neurotherapeutics ; 20(6): 1875-1892, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37782408

ABSTRACT

Dopamine and serotonin signalling are associated with major depressive disorder, which is a prevalent life-threatening illness worldwide. Numerous FDA-approved dopamine/serotonin signalling-modifying drugs are available but are associated with concurrent side effects and limited efficacy. Thus, identifying and targeting their signalling pathway is crucial for improving depression treatment. Here, we determined that serotonin receptor 2A (5-HT2AR) abundantly forms a protein complex with dopamine receptor 1 (D1R) in high abundance via its carboxy-terminus in the brains of mice subjected to various chronic stress paradigms. Furthermore, the D1R/5-HT2AR interaction elicited CREB/ERK/AKT modulation during synaptic regulation. An interfering peptide (TAT-5-HT2AR-SV) agitated the D1R/5-HT2AR interaction and attenuated depressive symptoms accompanied by CREB/ERK molecule costimulation. Interestingly, HDAC antagonism but not TrkB antagonism reversed the antidepressant effect of competitive peptides. These findings revealed a novel D1R/5-HT2AR heteroreceptor complex mechanism in the pathophysiology of depression, and their uncoupling ameliorates depressive-like behaviours through HDAC-, and not BDNF-, dependent mechanisms.


Subject(s)
Depressive Disorder, Major , Receptors, Dopamine , Mice , Animals , Serotonin , Dopamine , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
4.
Front Mol Neurosci ; 16: 1048985, 2023.
Article in English | MEDLINE | ID: mdl-37008780

ABSTRACT

Background: Despite its role in inflammation and the redox system under hypoxia, the effects and molecular mechanisms of hypoxia-inducible factor (HIF) in neuroinflammation-associated depression are poorly explored. Furthermore, Prolyl hydroxylase domain-containing proteins (PHDs) regulate HIF-1; however, whether and how PHDs regulate depressive-like behaviors under Lipopolysaccharides (LPS)-induced stress conditions remain covered. Methods: To highlight the roles and underlying mechanisms of PHDs-HIF-1 in depression, we employed behavioral, pharmacological, and biochemical analyses using the LPS-induced depression model. Results: Lipopolysaccharides treatment induced depressive-like behaviors, as we found, increased immobility and decreased sucrose preference in the mice. Concurrently, we examined increased cytokine levels, HIF-1 expression, mRNA levels of PHD1/PHD2, and neuroinflammation upon LPS administration, which Roxadustat reduced. Furthermore, the PI3K inhibitor wortmannin reversed Roxadustat-induced changes. Additionally, Roxadustat treatment attenuated LPS-induced synaptic impairment and improved spine numbers, ameliorated by wortmannin. Conclusion: Lipopolysaccharides-dysregulates HIF-PHDs signaling may contribute to neuroinflammation-coincides depression via PI3K signaling.

SELECTION OF CITATIONS
SEARCH DETAIL
...