Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Psychiatr Res ; 175: 235-242, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749297

ABSTRACT

Rapid Automatized Naming (RAN) is the core defect of developmental dyslexia (DD), requiring collaboration among brain areas to complete. However, it's still unclear which effective connectivity (EC) among brain areas are crucial for RAN deficits in Chinses children with DD. The current study aims to explore the EC among brain areas related to RAN deficits in Chinese children with DD. We recruited 36 Chinese children with DD and 64 typically developing (TD) children aged 8-12 to complete resting-state functional magnetic resonance imaging (rs-fMRI) scan. Granger causality analysis (GCA) was employed to analysis the EC among brain areas related to RAN, and to calculate the relationship between EC and RAN scores. Compared to TD group, the DD group exhibited significantly decreased EC from left precentral gyrus (PG) to right precuneus, left anterior cingulate and paracingulate gyrus (ACG), left calcarine and right angular, from left middle frontal gyrus (MFG) to left calcarine. Additionally, the DD group showed increased EC from right cuneus to left inferior frontal gyrus triangular part (IFGtri). The EC from left PG to left ACG was positively correlated with letters-RAN score. The results showed Chinese children with DD had both defect and compensatory mechanisms for their RAN deficits. The decreased EC output from left PG may be the core problem of the RAN deficits, which may influence the integration of visual-spatial information, attention, memory retrieval, and speech motor in speech production. The current study has important clinic implications for establishing intervention measures targeted brain.


Subject(s)
Dyslexia , Magnetic Resonance Imaging , Humans , Dyslexia/diagnostic imaging , Dyslexia/physiopathology , Child , Male , Female , China , Connectome , Brain/diagnostic imaging , Brain/physiopathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Brain Mapping , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology , East Asian People
SELECTION OF CITATIONS
SEARCH DETAIL