Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(26): e2402824, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38588011

ABSTRACT

Triboelectric-electromagnetic hybrid nanogenerator (TEHG) has emerged as a promising technology for distributed energy harvesting. However, currently reported hybrid generators are straightforward combinations of two functional components. Moreover, inevitable heat from friction intensifies material abrasion and degrades the performance of polymer-based triboelectric nanogenerators (TENGs). Here, a self-reinforcing TEHG (SR-TEHG) that harnesses the magnetocaloric and magnetization effects of gadolinium (Gd), is proposed. The synergy between TENG and electromagnetic generator (EMG) renders them an indivisible unit. Leveraging Gd's magnetocaloric effect, an efficient heat transfer mechanism is constructed to cool the tribolayer and strengthen the device's electrical stability. After 80 h of continuous operation, the optimized TENG occupies a charge decay rate of only 0.32% per hour, significantly outperforming most existing TENGs. Additionally, Gd's magnetization effect boosts the power of EMG by ≈80.84%. This work provides a universal solution in hybrid generators where internal components reinforce each other, achieving a synergistic effect of 1 + 1 > 2.

2.
Research (Wash D C) ; 6: 0168, 2023.
Article in English | MEDLINE | ID: mdl-37303603

ABSTRACT

The hybrid electromagnetic-triboelectric generator (HETG) is a prevalent device for mechanical energy harvesting. However, the energy utilization efficiency of the electromagnetic generator (EMG) is inferior to that of the triboelectric nanogenerator (TENG) at low driving frequencies, which limits the overall efficacy of the HETG. To tackle this issue, a layered hybrid generator consisting of a rotating disk TENG, a magnetic multiplier, and a coil panel is proposed. The magnetic multiplier not only forms the EMG part with its high-speed rotor and the coil panel but also facilitates the EMG to operate at a higher frequency than the TENG through frequency division operation. The systematic parameter optimization of the hybrid generator reveals that the energy utilization efficiency of EMG can be elevated to that of rotating disk TENG. Incorporating a power management circuit, the HETG assumes the responsibility for monitoring the water quality and fishing conditions by collecting low-frequency mechanical energy. The magnetic- multiplier-enabled hybrid generator demonstrated in this work offers a universal frequency division approach to improve the overall outputs of any hybrid generator that collects rotational energy, expanding its practical applications in diverse multifunctional self-powered systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...