Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(8): e29784, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38681589

ABSTRACT

This study investigated the effects of partially replacing corn with elephant grass dry matter (air drass) on growth performance, serum parameters, carcass traits, and nutrient digestibility in geese. A total of 360 one-day-old Hortobágyi geese were randomly divided into three groups: control (basic diet), 12 % elephant grass, and 24 % elephant grass. The geese were raised for 70 days. The results showed that compared to the control, 12 % elephant grass had no adverse effects on final body weight, feed/gain ratio, mortality, serum liver and kidney function markers. However, 24 % elephant grass significantly reduced the final body weight (P < 0.001) and feed/gain ratio (P = 0.026) compared to the control group. Both experiment groups had decreased serum aspartate aminotransferase (P < 0.001), alanine aminotransferase (P < 0.001), alkaline phosphatase (P < 0.001), triglycerides (P < 0.001), and total cholesterol (P < 0.001). The addition of 12 % and 24 % elephant grass reduced abdominal fat (P = 0.002), but it had no significant effect on slaughter rate, half-bore rate, full-bore rate, breast muscle rate and leg muscle rate. For nutrient digestibility, 12 % elephant grass improved neutral detergent fiber digestibility compared to the control group (P = 0.026). The 24 % grass group had reduced Ca absorption (P = 0.020). Overall, the findings suggest that partially replacing corn with 12 % elephant grass in goose diet can maintain growth performance and carcass traits.It also has no negative effect on nutrient digestibility while improving serum parameters.

2.
Front Vet Sci ; 10: 1210706, 2023.
Article in English | MEDLINE | ID: mdl-37397002

ABSTRACT

Introduction: The aim of this study was to investigate the effects of adding whole-plant ensiled corn stalks (WECS) to the diet of Holdorbagy geese on their growth performance, serum parameters, and cecal microbiota. Geese farming is an important agricultural practice, and optimizing their diet can contribute to better growth and health outcomes. However, there is limited research on the utilization of WECS as a feed source for geese. Understanding the potential effects of WECS on growth, blood parameters, and cecal microbiota can provide valuable insights into its feasibility and impact on geese farming practices. Methods: A total of 144 six-week-old Holdorbagy geese were randomly assigned to one of three groups: a control group (0% WECS), a group fed 15% WECS and 85% concentrated feed (15% WECS), and a group fed 30% WECS and 70% concentrated feed (30% WECS). The trial period lasted for three weeks, during which the growth performance, serum parameters, and cecal microbiota were assessed. Results: The results revealed significant findings in different aspects. Firstly, the feed-to-gain ratio (F/G ratio) of the 15% WECS group was significantly higher than that of the control group (p<0.05), indicating potential challenges in feed efficiency. Additionally, the average daily feed intake (ADFI) of both the 15% and 30% WECS groups was significantly higher than that of the control group (p<0.05), suggesting increased appetite or palatability of the diet containing WECS. In terms of serum parameters, the level of lactate dehydrogenase (LDH) in the 30% WECS group was significantly lower than that in the control group (p<0.05). Moreover, there was a tendency for increasing Fe levels and decreasing Zn levels with higher levels of WECS supplementation, although the differences were not statistically significant (p<0.05). Furthermore, the principal coordinate analysis showed significant differences in the composition of cecal microbiota among the three groups (p < 0.01). The observed_species, Shannon, and Pielou_e indices of the 30% WECS group were significantly higher than those of the 0% and 15% WECS groups (p<0.05), while the Simpson index of the 15% WECS group was significantly lower than that of the control group (p<0.05). Discussion: The results indicate that the addition of WECS to the geese diet has both positive and negative effects. The study suggests that WECS can be a long-term stable feed source for geese, which can contribute to reducing feeding costs. However, it is important to monitor the amount of WECS added as it can affect the absorption of Zn by geese. Supplementation of Zn in the diet might be necessary to meet the needs of geese. Notably, adding 30% WECS to the diet can increase the richness, evenness, and diversity of the cecal microbiota, indicating potential benefits to gut health. In conclusion, this study highlights the potential of WECS as a feed source for geese. It provides valuable insights into the effects of WECS on growth performance, serum parameters, and cecal microbiota. These findings contribute to optimizing geese farming practices, improving feed utilization, and enhancing overall productivity and well-being of geese. Further research is needed to determine the optimal inclusion level of WECS and to explore strategies for mitigating any negative effects.

3.
Front Microbiol ; 14: 1185218, 2023.
Article in English | MEDLINE | ID: mdl-37303790

ABSTRACT

Bile acids(BAs) are important components of bile and play a significant role in fat metabolism. However, there is currently no systematic evaluation of the use of BAs as feed additives for geese.This study aimed to investigate the effects of adding BAs to goose feed on growth performance, lipid metabolism, intestinal morphology, mucosal barrier function, and cecal microbiota. A total of 168 28-day-old geese were randomly assigned to four treatment groups and fed diets supplemented with 0, 75, 150, or 300 mg/kg of BAs for 28 days. The addition of 75 and 150 mg/kg of BAs significantly improved the feed/gain (F/G) (p < 0.05).The addition of BAs decreased abdominal fat percentage and serum total cholesterol (TC) levels, with 150 mg/kg of BAs significantly reducing serum triglyceride levels and increased expression of Farnesoid X Receptor (FXR) mRNA in the liver(p < 0.05), 300 mg/kg of BAs significantly increasing the expression level of liver peroxisome proliferator-activated receptor α (PPARα) (p < 0.05). In terms of intestinal morphology and mucosal barrier function, 150 mg/kg of BAs significantly increased villus height (VH) and VH/crypt depth (CD) in the jejunum (p < 0.05). The addition of 150 and 300 mg/kg of BAs significantly reduced the CD in the ileum, while increasing VH and VH/CD (p<0.05). Additionally, the addition of 150 and 300 mg/kg of BAs significantly increased the expression levels of zonula occludens-1 (ZO-1) and occludin in the jejunum. Simultaneously 150mg/kg and 300mg/kg BAs increased the total short-chain fatty acids (SCFA) concentrations in the jejunum and cecum(p < 0.05).Supplementation with BAs resulted in a significant increase in the ɑ-diversity of cecal microbiota and a decrease in the abundance of Proteobacteria in the cecum. The addition of 150 mg/kg of BAs significantly reduced the abundance of Bacteroidetes and increased the abundance of Firmicutes. Moreover,Linear discriminant analysis Effect Size analysis (LEfSe) showed that the abundances of bacteria producing SCFA and bile salt hydrolases (BSH) were increased in the BAs-treated group. Furthermore, Spearman's analysis showed that the genus Balutia, which is negatively correlated with visceral fat area, was positively correlated with serum high-density lipoprotein cholesterol (HDL-C), while Clostridium was positively correlated with intestinal VH and VH/CD. In conclusion, BAs can be considered an effective feed additive for geese, as they increased SCFA concentration, improve lipid metabolism and intestinal health by enhancing the intestinal mucosal barrier, improving intestinal morphology, and altering the cecal microbiota structure.

4.
Anim Biotechnol ; 34(4): 1170-1178, 2023 Nov.
Article in English | MEDLINE | ID: mdl-34928784

ABSTRACT

Insulin-like growth factor 2 (IGF2) belongs to the member of the insulin-like growth factors family, which plays key roles in animal growth, differentiation and proliferation, as well as reproduction and the regulation of ovarian follicle development. However, little is known about the goose IGF2 gene. In this study, a 1879 bp fragment that covered the complete coding region (CDS) of goose IGF2 cDNA was identified for the first time. The cDNA consists of an open reading frame of 574 nucleotides with the capacity to encode a prepro-IGF-II protein of 187 amino acids, which comprises a signal peptide (24 residues), IGF-II peptide (67 residues), and C-terminal peptide (96 residues), and is closely related to that of chicken. qPCR indicates that the goose IGF2 mRNA is differentially expressed in all examined tissues of fertilized eggs (28 days) and laying Zhedong White geese (270 days). Two novel single nucleotide polymorphisms (SNPs) were detected in exon 1 (G63A, Chr2: G26541617A) and intron 1 (G38A, Chr2: G26541479A) regions, and the synonymous mutation G63A showed a significant association with egg numbers (E180d) of Sanhua goose population (p < 0.05). All the information derived from this study could be valuable and facilitate further studies on the functions of goose IGF2 gene.


Subject(s)
Geese , Insulin-Like Growth Factor II , Female , Animals , Geese/genetics , Amino Acid Sequence , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , DNA, Complementary/genetics , Polymorphism, Single Nucleotide/genetics , Cloning, Molecular
5.
Anim Biotechnol ; 34(7): 3261-3266, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36001379

ABSTRACT

Insulin-like growth factors 2 (IGF2) is an insulin-like growth factor that plays a major role in animal growth, cell proliferation and differentiation, as well as reproduction. IGF2 is well-known to be a candidate gene of growth and reproductive traits in many agricultural animals. Our previous study revealed that the G63A (Chr2: G26541617A) mutation within IGF2 exon 1 showed a significant association with egg numbers (E180d) of Sanhua goose population (p < 0.05). However, little work focus on the correlation between the IGF2 mutations and goose growth traits. In this study, qPCR indicated that the IGF2 mRNA highly expressed in leg muscle, liver, ovary and pituitary gland. Meanwhile, association analysis showed that the G63A mutation was significantly associated with the body weight of first-hatched Zhedong-White geese (BW0, p < 0.05), and strongly significantly associated with the BW2, BW4, BW6, BW8 and BW10 (p < 0.01). The GG homozygous had the lowest BW (from 4 weeks to 10 weeks) than those of AA and AG genotypes (p < 0.01), and the allele A was also positively correlated with the BW of the Zhedong-White goose population. Therefore, the G63A mutation in IGF2 may be an important genetic marker for goose breeding.


Subject(s)
Geese , Female , Animals , Geese/genetics , Genotype , Alleles , Phenotype , Mutation
6.
Front Vet Sci ; 9: 1006318, 2022.
Article in English | MEDLINE | ID: mdl-36406074

ABSTRACT

The study aimed to investigate the effects of honeysuckle extract (HE) on growth performance, serum biochemical indexes, immune organ indexes, gut morphology, and gut microbes in geese. A total of 180 28-day-old Holdobaki geese were randomly divided into three groups. Each group contained 6 replicates (10 geese, with 5 males and 5 females). The BD group was fed the basal diet, the HE1 group was fed the basal diet supplemented with 1 g/kg of HE, and the HE2 group was fed the basal diet supplemented with 2 g/kg of HE. The experiment lasted for 42 days. The results showed that, compared with the BD group, the average daily gain (ADG) of the HE1 and HE2 groups tended to increase (0.05 < P < 0.10), but the average daily feed intake (ADFI) and final body weight (BW) did not differ significantly, and the feed/gain ratio (F/G) was significantly lower (P < 0.01). The bursa index and the thymus index tended to increase (0.05 < P < 0.10), and serum immunoglobulin A (IgA) and immunoglobulin G (IgG) levels increased significantly (P < 0.05). In the HE1 and HE2 groups, the crypt depth (CD) in the jejunum tended to decrease (0.05 < P < 0.10), and the villus height/crypt depth ratio (V/C) increased significantly in the jejunum and the ileum (P < 0.05). According to 16sRNA microbial community diversity analysis, Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria were the dominant phyla. The abundance of Firmicutes was significantly decreased (P < 0.01), while that of Bacteroidetes was significantly increased (P < 0.01), in the HE1 and HE2 groups compared with the BD group. Bacteroides barnesiae, Subdoligranulum variabile, Bacteroides plebeius, and Faecalibacterium prausnitzii were the dominant species, and the abundance of B. plebeius and F. prausnitzii was significantly increased (P < 0.05). According to the LEfSe analysis, BD enriched g_Dorea and g_Dehalobacterium; HE1 enriched g_Faecalibacterium, g_Dialister, g_Prevotella, g_Megamonas, g_Phascolarctobacterium, g_Paraprevotella, g_Anaerostipes, g_Staphylococcus, g_Odoribacter, g_Succinivibrio, and g_Sutterella; and HE2 enriched g_Parabacteroides, g_Olsenella, g_human, and g_Rikenella. According to the Spearman correlation analysis, Bacteroides plebeius was positively correlated with final BW, ADG, IgA, IgG, VH (ileum), and V/C (ileum) and was negatively correlated with F/G and CD (ileum); Ruminococcus gnavus was negatively correlated with final BW, ADG, IgA, and IgG. HE supplementation at 1 g/kg improved growth performance, immune performance, gut morphology, and cecal microbes.

7.
Reprod Biol ; 22(2): 100640, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35429808

ABSTRACT

Forkhead box L2 (FOXL2) is a forkhead transcription factor essential for proper reproductive function in females and plays a crucial role in ovarian development in many species of vertebrates. However, little research on goose FOXL2 gene has been conducted. In this study, the cDNA and genomic DNA sequences of goose FOXL2 gene were cloned and characterized. The goose FOXL2 is a single exon gene and contains one open reading frame of 918 bp encoding a protein of 305 amino acids. Bioinformatics analysis displays that the deduced FOXL2 amino acid sequence contains the highly conserved forkhead box domain, which shares greatest similarity to avian species, especially to that of ducks and chicken. RT-qPCR analysis indicates that the FOXL2 mRNA is widely expressed in all examined tissues of fertilized female eggs (28 days), and differentially expressed in female adult (70 days) and laying Zhedong White geese (270 days). Meanwhile, FOXL2 is highly expressed in the hypothalamic-pituitary-ovarian axis, especially in the ovary tissues of the adult and laying geese. Furthermore, one microsatellite (TGTC1415-1418----) and five single nucleotide polymorphisms (A1290G, G1495A, T1554C, T1692A, C1695G and T1697G) were identified in the 3'-untranslated regions. All the information derived from this study could be valuable and facilitate further researches on the function of FOXL2 gene in geese.


Subject(s)
Geese , Gene Expression Profiling , Amino Acid Sequence , Animals , Cloning, Molecular , DNA, Complementary/chemistry , Female , Geese/genetics , Geese/metabolism , Phylogeny
8.
Mol Biol Rep ; 41(5): 2929-36, 2014 May.
Article in English | MEDLINE | ID: mdl-24452723

ABSTRACT

Dopamine D1 receptor (DRD1) is one of the dopamine receptors with seven transmembrane domains that are coupled to the G protein. In the present study, we cloned the full coding region of DRD1 gene by the reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends from the goose hypothalamus tissues. Results showed that the goose DRD1 cDNA (GenBank: KF156790) contained a 1,356 bp open reading frame encoding a protein 452 amino acid with a molecular weight of 50.52 kDa and a isoelectric point of 6.96. Bioinformatics analysis indicated that the deduced amino acid sequence was 71-98% identical to the DRD1 protein of other species, contained seven transmembrane domains and four N-glycosylation sites. A phylogenetic tree analysis revealed that the deduced goose DRD1 protein had a close genetic relationship and evolutional distance with that of duck, chicken, and zebra finch. The semi-quantitative RT-PCR analysis displayed goose DRD1 gene was widely expressed in all detected tissues, including heart, lung, liver, spleen, kidney, breast muscle, duodenum, sebum, pituitary, hypothalamus, ovary and oviduct. Eighteen single nucleotide polymorphisms were indentified in 3,169 bp length of this gene. For G90A mutation, the genotyping analysis of PCR-TspRI-RFLP showed the allele G was in dominance in all detected goose breeds, and the allele frequencies of this polymorphism were significantly different between Chinese goose breeds and foreign breeds (P<0.01). These findings will help us understand the functions of the DRD1 gene and the molecular breeding in geese.


Subject(s)
Geese/genetics , Gene Expression , Polymorphism, Genetic , Receptors, Dopamine D1/genetics , Alleles , Amino Acid Sequence , Animals , Base Sequence , Evolution, Molecular , Female , Gene Expression Profiling , Gene Frequency , Genotype , Molecular Sequence Data , Organ Specificity/genetics , Phylogeny , Receptors, Dopamine D1/chemistry , Sequence Analysis, DNA
9.
Gene ; 535(2): 177-83, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24309374

ABSTRACT

Dopamine D2 receptor (DRD2) gene, a member of the dopamine receptors gene family, has been studied as a candidate gene for broodiness due to its special effects on avian prolactin secretion. Here, the genomic DNA and cDNA sequences of goose (Anser cygnoides) DRD2 gene were cloned and characterized for the first time. The goose DRD2 cDNA is 1353bp in length and encodes a protein of 450 amino acids. The length of goose DRD2 genomic DNA is 8350bp, including seven exons and six introns. We identified four goose DRD2 variants, which were generated due to alternative splicing. Bioinformatics analysis indicates that all the deduced DRD2 amino acid sequences contain seven putative transmembrane domains and four potential N-glycosylation sites. A phylogenetic tree based on amino acid sequences displays that the goose DRD2 protein is closely related to those of avian species. Semi-quantitative RT-PCR analysis demonstrates that the DRD2-1, DRD2-2 and DRD2-4 transcripts are differentially expressed in the pituitary, ovary, hypothalamus, as well as in the kidney, whereas the DRD2-3 transcript is widely expressed in all the examined tissues at different levels. Meanwhile, 54 single nucleotide polymorphisms (SNPs) and 4 insert-deletion (indel) variations were identified in the coding region and partial intron region of the goose DRD2 gene. Those findings will help us gain insight into the functions of the DRD2 gene in geese.


Subject(s)
Geese/genetics , Gene Expression Regulation , Receptors, Dopamine D2/genetics , Alternative Splicing , Amino Acid Sequence , Animals , Base Sequence , DNA, Complementary/chemistry , DNA, Complementary/genetics , Female , Geese/classification , Geese/metabolism , Molecular Sequence Data , Phylogeny , Polymorphism, Genetic , RNA Isoforms , Receptors, Dopamine D2/chemistry , Receptors, Dopamine D2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...