Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Phys Condens Matter ; 36(8)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37956444

ABSTRACT

Bipolar magnetic semiconductor (BMS) is a class of magnetic semiconductors, whose valence band maximum and conduction band minimum are fully spin-polarized with opposite spin directions. Due to the special energy band, half-metallicity can be easily obtained in BMS by gate voltage, and the spin polarization can be reversed between spin-up and down when the gate voltage switches from positive to negative. BMSs have great potential applications in spintronic devices, such as the field-effect spin valves, spin filters and spin transistors,etc. With the rapid progress of the two-dimensional (2D) magnetic materials, researchers have identified a series of potential intrinsic 2D BMS materials using high-throughput computational methods. Additionally, methods such as doping, application of external stress, introduction of external fields, stacking of interlayer antiferromagnetic semiconductors, and construction of Janus structures have endowed existing materials with BMS properties. This paper reviews the research progress of 2D BMS. These advancements provide crucial guidance for the design and synthesis of BMS materials and offer innovative pathways for the future development of spintronics.

2.
Nat Commun ; 14(1): 3839, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37380629

ABSTRACT

The recently emerged ferromagnetic two-dimensional (2D) materials provide unique platforms for compact spintronic devices down to the atomic-thin regime; however, the prospect is hindered by the limited number  of ferromagnetic 2D materials discovered with limited choices of magnetic properties. If 2D antiferromagnetism could be converted to 2D ferromagnetism, the range of 2D magnets and their potential applications would be significantly broadened. Here, we discovered emergent ferromagnetism by interfacing non-magnetic WS2 layers with the antiferromagnetic FePS3. The WS2 exhibits an order of magnitude enhanced Zeeman effect with a saturated interfacial exchange field ~38 Tesla. Given the pristine FePS3 is an intralayer antiferromagnet, the prominent interfacial exchange field suggests the formation of ferromagnetic FePS3 at interface. Furthermore, the enhanced Zeeman effect in WS2 is found to exhibit a strong WS2-thickness dependence, highlighting the layer-tailorable interfacial exchange coupling in WS2-FePS3 heterostructures, which is potentially attributed to the thickness-dependent interfacial hybridization.

3.
J Phys Condens Matter ; 34(42)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35878601

ABSTRACT

Our first-principles evidence shows that the two-dimensional (2D) multiferroic VSe2/In2Se3experiences continuous change of electronic structures, i.e. with the change of the ferroelectric (FE) polarization of In2Se3, the heterostructure can possess type-I, -II, and -III band alignments. When the FE polarization points from In2Se3to VSe2, the heterostructure has a type-III band alignment, and the charge transfer from In2Se3into VSe2induces half-metallicity. With reversal of the FE polarization, the heterostructure enters the type-I band alignment, and the spin-polarized current is turned off. When the In2Se3is depolarized, the heterostructure has a type-II band alignment. In addition, influence of the FE polarization on magnetism and magnetic anisotropy energy of VSe2was also analyzed, through which we reveal the interfacial magnetoelectric coupling effects. Our investigation about VSe2/In2Se3predicts its wide applications in the fields of both 2D spintronics and multiferroics.

4.
J Phys Condens Matter ; 33(20)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33690184

ABSTRACT

Using the first-principles calculations, we explore the nearly free electron (NFE) states in the transition-metal dichalcogenidesMX2(M= Mo, W;X= S, Se, Te) monolayers. It is found that both the external electric field and electron (not hole) injection can flexibly tune the energy levels of the NFE states, which can shift down to the Fermi level and result in novel transport properties. In addition, we find that the valley polarization can be induced by both electron and hole doping in MoTe2monolayer due to the ferromagnetism induced by the charge injection, which, however, is not observed in other five kinds ofMX2monolayers. We carefully check band structures of all theMX2monolayers, and find that the exchange splitting in the top of the valence band and the bottom of conduction band plays the key role in the ferromagnetism. Our researches enrich the electronic, spintronic, and valleytronic properties ofMX2monolayers.

5.
Nano Lett ; 20(10): 7230-7236, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32786931

ABSTRACT

Two-dimensional electron gas (2DEG) created at compound interfaces can exhibit a broad range of exotic physical phenomena, including quantum Hall phase, emergent ferromagnetism, and superconductivity. Although electron spin plays key roles in these phenomena, the fundamental understanding and application prospects of such emergent interfacial states have been largely impeded by the lack of purely spin-polarized 2DEG. In this work, by first-principles calculations of the multiferroic superlattice GeTe/MnTe, we find the ferroelectric polarization of GeTe is concurrent with the half-metallic 2DEG at interfaces. Remarkably, the pure spin polarization of the 2DEG can be created and annihilated by polarizing and depolarizing the ferroelectrics and can be switched (between pure spin-up and pure spin-down) by flipping the ferroelectric polarization. Given the electric-field amplification effect of ferroelectric electronics, we envision multiferroic superlattices could open up new opportunities for low-power, high-efficiency spintronic devices such as spin field-effect transistors.

6.
J Phys Condens Matter ; 32(5): 055703, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-31610532

ABSTRACT

Two dimensional (2D) ferroelectric materials are gaining growing attention due to their nontrival ferroelectricity, and the 2D ferroelectric heterostructures with tunable electronic, optoelectronic, or even magnetic properties, show many novel properties that do not exist in their constituents. In this work, by using the first-principles calculations, we investigate the ferroelectric and dipole control of electronic structures of the 2D ferroelectric heterostructure InTe/In2Se3. It is found that band alignment is closely dependent on the ferroelectric polarization of In2Se3. By switching the polarization of In2Se3, the band alignment of InTe/In2Se3 switches from a staggered (type II) to a straddling type (type I), and the band gap changes from indirect gap 0.76 eV to direct gap 0.15 eV. When the ferroelectric field of In2Se3 is reversed, the band alignment of InTe/In2Se3 switches from type-I to type-II, and the band gap changes from indirect gap 0.76 eV to direct gap 0.15 eV. In addition, we find that the interlayer dipole can also effectively modulate the band structure and induce the type-I to type-II band alignment transition. Our present results indicate that the 2D ferroelectric heterostructure with the tunable band alignment and band gap can be of great significance in the optoelectronic devices.

7.
J Phys Condens Matter ; 31(20): 205501, 2019 May 22.
Article in English | MEDLINE | ID: mdl-30708355

ABSTRACT

The ferromagnetism of the two dimensional (2D) Cr2Ge2Te6 atomic layers with the perpendicular magnetic anisotropy and the Curie temperature 30-50 K has recently been experimentally confirmed. By performing the density-functional theory calculations, we demonstrate that the magnetic properties of bilayer Cr2Ge2Te6 can be flexibly tailored, due to the effective band structure tuning by the external electric field. The electric field induces the semiconductor-metal transition and redistributes charge and spin between the two layers. Furthermore, the magnetic anisotropy energy of the bilayer Cr2Ge2Te6 can be obviously enhanced by the electric field, which is helpful to stabilize the long-range ferromagnetic order. Our study about the electric manipulation of magnetism based on the band structure engineering generally exists in 2D magnetic systems and will be of great significance in low-dimensional all-electric spintronics.

8.
J Phys Condens Matter ; 31(7): 075803, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30523803

ABSTRACT

Interface effects in magnetic nanostructures play a critical role in the magnetic properties. By using first-principles density functional theory calculations, we investigate the electronic and magnetic properties of Fe/SrTiO3 interfaces, in which both the nonpolar surface SrTiO3(0 0 1) and the polar surface SrTiO3(1 1 0) are considered. A particular emphasis is placed on the magnetic anisotropy energy (MAE). Comparing MAE of the Fe/SrTiO3 interfaces and the corresponding Fe monolayers, we find the Fe/SrTiO3(0 0 1) interface decreases MAE, while the Fe/SrTiO3(1 1 0) interface increases MAE. The interface orbital hybridization and orbital magnetic moments are analyzed in detail to understand the different interface magnetic anisotropy. Our investigation indicates that interface engineering can be an effective way to modulate the magnetic properties.

9.
Proc Natl Acad Sci U S A ; 115(34): 8511-8516, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30076226

ABSTRACT

Engineering the electronic band structure of material systems enables the unprecedented exploration of new physical properties that are absent in natural or as-synthetic materials. Half metallicity, an intriguing physical property arising from the metallic nature of electrons with singular spin polarization and insulating for oppositely polarized electrons, holds a great potential for a 100% spin-polarized current for high-efficiency spintronics. Conventionally synthesized thin films hardly sustain half metallicity inherited from their 3D counterparts. A fundamental challenge, in systems of reduced dimensions, is the almost inevitable spin-mixed edge or surface states in proximity to the Fermi level. Here, we predict electric field-induced half metallicity in bilayer A-type antiferromagnetic van der Waals crystals (i.e., intralayer ferromagnetism and interlayer antiferromagnetism), by employing density functional theory calculations on vanadium diselenide. Electric fields lift energy levels of the constituent layers in opposite directions, leading to the gradual closure of the gap of singular spin-polarized states and the opening of the gap of the others. We show that a vertical electrical field is a generic and effective way to achieve half metallicity in A-type antiferromagnetic bilayers and realize the spin field effect transistor. The electric field-induced half metallicity represents an appealing route to realize 2D half metals and opens opportunities for nanoscale highly efficient antiferromagnetic spintronics for information processing and storage.

10.
Phys Rev Lett ; 121(1): 017402, 2018 Jul 06.
Article in English | MEDLINE | ID: mdl-30028160

ABSTRACT

The shift current (SHC) has been accepted as the primary mechanism of the bulk photovoltaic effect (BPVE) in ferroelectrics, which is much different from the typical p-n junction-based photovoltaic mechanism in heterogeneous materials. In the present work, we use first-principles calculations to investigate the SHC response in the ferroelectric semiconductor GeTe, which is found possess a large SHC response due to its intrinsic narrow band gap and high covalency. We explore the changes of SHC response induced by phonon vibrations, and analytically fit current versus vibrational amplitude to reveal the quantitative relationships between vibrations and the SHC response. Furthermore, we demonstrate the temperature dependence of the SHC response by averaging the phonon vibration influence in the Brillouin zone. Our investigation provides an explicit experimental prediction about the temperature dependence of BPVE and can be extended to other classes of noncentrosymmetric materials.

11.
J Phys Condens Matter ; 29(47): 475803, 2017 11 29.
Article in English | MEDLINE | ID: mdl-29094679

ABSTRACT

Considerable progress in contemporary spintronics has been made in recent years for developing nanoscale data memory and quantum information processing. It is, however, still a great challenge to achieve the ultimate limit of storage bit. 2D materials, fortunately, provide an alternative solution for designing materials with the expected miniaturizing scale, chemical stability as well as giant magnetic anisotropy energy. By performing first-principles calculations, we have examined two possible doping sites on a WS2 monolayer using three kinds of transition metal (TM) atoms (Mn, Fe and Co). It is found that the TM atoms prefer to stay on the W atom site. Additionally, differently from the case of Mn, doping Co and Fe atoms on the W vacancy can achieve perpendicular magnetic anisotropy with a much larger magnitude, which provides a bright prospect for generating atomic-scale magnets of storage devices.

12.
Nanoscale ; 9(45): 17957-17962, 2017 Nov 23.
Article in English | MEDLINE | ID: mdl-29125168

ABSTRACT

GeTe is a prototypical compound of a new class of multifunctional materials, i.e., ferroelectric Rashba semiconductors (FRS). In the present work, by combining the first-principles calculations and Rashba model analysis, we reexamine Rashba spin-orbit coupling (SOC) in a GeTe(111) crystal and clarify its linear Rashba SOC strength. We further investigate Rashba SOC at the interface of a GeTe(111)/InP(111) superlattice and demonstrate the ferroelectric manipulation of Rashba SOC in detail. A large modulation of Rashba SOC is obtained, and surprisingly, we find that Rashba SOC does not monotonically increase with the increase of ferroelectric displacement, due to the parabola opening reversal of Rashba splitting bands. In addition, a reversal of the spin texture is realized by tuning the ferroelectric polarization. Our investigation provides a deep insight into the ferroelectric control of Rashba SOC, which is of great importance in FRS spin field effect transistors.

13.
Nat Commun ; 7: 13612, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27982088

ABSTRACT

Valleytronics rooted in the valley degree of freedom is of both theoretical and technological importance as it offers additional opportunities for information storage, as well as electronic, magnetic and optical switches. In analogy to ferroelectric materials with spontaneous charge polarization, or ferromagnetic materials with spontaneous spin polarization, here we introduce a new member of ferroic family, that is, a ferrovalley material with spontaneous valley polarization. Combining a two-band k·p model with first-principles calculations, we show that 2H-VSe2 monolayer, where the spin-orbit coupling coexists with the intrinsic exchange interaction of transition-metal d electrons, is such a room-temperature ferrovalley material. We further predict that such system could demonstrate many distinctive properties, for example, chirality-dependent optical band gap and, more interestingly, anomalous valley Hall effect. On account of the latter, functional devices based on ferrovalley materials, such as valley-based nonvolatile random access memory and valley filter, are contemplated for valleytronic applications.

14.
Sci Rep ; 5: 17993, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26648508

ABSTRACT

Magnetic ordering could have significant influence on band structures, spin-dependent transport, and other important properties of materials. Its measurement, especially for the case of antiferromagnetic (AFM) ordering, however, is generally difficult to be achieved. Here we demonstrate the feasibility of magnetic ordering detection using a noncontact and nondestructive optical method. Taking the tetragonal BiFeO3 (BFO) as an example and combining density functional theory calculations with tight-binding models, we find that when BFO changes from C1-type to G-type AFM phase, the top of valance band shifts from the Z point to Γ point, which makes the original direct band gap become indirect. This can be explained by Slater-Koster parameters using the Harrison approach. The impact of magnetic ordering on band dispersion dramatically changes the optical properties. For the linear ones, the energy shift of the optical band gap could be as large as 0.4 eV. As for the nonlinear ones, the change is even larger. The second-harmonic generation coefficient d33 of G-AFM becomes more than 13 times smaller than that of C1-AFM case. Finally, we propose a practical way to distinguish the two AFM phases of BFO using the optical method, which is of great importance in next-generation information storage technologies.

15.
J Phys Condens Matter ; 27(7): 076003, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25629772

ABSTRACT

Atomic-scale magnetic nanostructures are promising candidates for future information processing devices. Utilizing external electric field to manipulate their magnetic properties is an especially thrilling project. Here, by carefully identifying the different contributions of each atomic orbital to the magnetic anisotropy energy (MAE) of the ferromagnetic metal films, we argue that it is possible to engineer both the MAE and the magnetic response to the electric field of atomic-scale magnetic nanostructures. Taking the iron monolayer as a matrix, we propose several interesting iron nanostructures with dramatically different magnetic properties. Such nanostructures could exhibit a strong magnetoelectric effect. Our work may open new avenues to the artificial design of electrically controlled magnetic devices.

16.
J Phys Condens Matter ; 25(39): 396001, 2013 Oct 02.
Article in English | MEDLINE | ID: mdl-23945470

ABSTRACT

Using first-principles density-functional theory calculations, we systematically investigate the magnetic anisotropy of the multilayer system Cu/(FePt)n/MgO, a promising spintronics structure. Particularly, we have studied the influence of the epitaxial strain, thickness of the ferromagnetic layer, and different interfaces on the magnetic anisotropy energy (MAE) of the system. It is found that the thickness of FePt has slight influence on the MAE, while the increase of the in-plane lattice constant a, or tensile strain, can significantly reduce and even change the sign of the MAE. The calculated density of states shows that the occupation number of the minority spin channel of Fe dx(2)-y(2) orbital decreases with the increase of a, which leads to the reduction of the orbital moment anisotropy of the Fe atom and therefore the decrease of MAE. We also consider the influence of the Cu/FePt and FePt/MgO interfaces on the MAE, and find that both interfaces can reduce the MAE. Especially, the effect of the Cu/FePt interface is more pronounced due to the increased occupation number of the minority spin channel of Fe dz(2) orbital.

17.
J Phys Condens Matter ; 25(16): 165504, 2013 Apr 24.
Article in English | MEDLINE | ID: mdl-23553548

ABSTRACT

Using density-functional theory calculations, we investigate the magnetic as well as the dynamical properties of tetragonal SrRuO3 (SRO) under the influence of epitaxial strain. It is found that both tensile and compressive strain in the xy-plane can induce an abrupt change in the magnetic moment of the Ru atom. In particular, under an in-plane compressive strain of ~4%, a ferromagnetic to nonmagnetic transition is induced, whereas for a tensile strain larger than 3%, the magnetic moment of Ru drops gradually with increase of the strain, exhibiting a weak ferromagnetic state. We find that these magnetic transitions can be qualitatively explained by the Stoner model. In addition, frozen-phonon calculations at the Γ point and phonon dispersion calculations reveal that structural instabilities can occur under both compressive and tensile strain. These instabilities are very similar to those of the ferroelectric perovskite oxides, even though SRO remains metallic in the range we studied. This might have an influence on the physical properties of oxide supercells having SRO as a constituent.

SELECTION OF CITATIONS
SEARCH DETAIL
...