Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Innovation (Camb) ; 5(4): 100640, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38881800

ABSTRACT

Self-sensing adaptability is a high-level intelligence in living creatures and is highly desired for their biomimetic soft robots for efficient interaction with the surroundings. Self-sensing adaptability can be achieved in soft robots by the integration of sensors and actuators. However, current strategies simply assemble discrete sensors and actuators into one robotic system and, thus, dilute their synergistic and complementary connections, causing low-level adaptability and poor decision-making capability. Here, inspired by vertebrate animals supported by highly evolved backbones, we propose a concept of a bionic spine that integrates sensing and actuation into one shared body based on the reversible piezoelectric effect and a decoupling mechanism to extract the environmental feedback. We demonstrate that the soft robots equipped with the bionic spines feature locomotion speed improvements between 39.5% and 80% for various environmental terrains. More importantly, it can also enable the robots to accurately recognize and actively adapt to changing environments with obstacle avoidance capability by learning-based gait adjustments. We envision that the proposed bionic spine could serve as a building block for locomotive soft robots toward more intelligent machine-environment interactions in the future.

2.
Adv Sci (Weinh) ; 11(24): e2308835, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38647364

ABSTRACT

Soft material-based robots, known for their safety and compliance, are expected to play an irreplaceable role in human-robot collaboration. However, this expectation is far from real industrial applications due to their complex programmability and poor motion precision, brought by the super elasticity and large hysteresis of soft materials. Here, a soft collaborative robot (Soft Co-bot) with intuitive and easy programming by contact-based drag teaching, and also with exceptional motion repeatability (< 0.30% of body length) and ultra-low hysteresis (< 2.0%) is reported. Such an unprecedented capability is achieved by a biomimetic antagonistic design within a pneumatic soft robot, in which cables are threaded to servo motors through tension sensors to form a self-sensing system, thus providing both precise actuation and dragging-aware collaboration. Hence, the Soft Co-bots can be first taught by human drag and then precisely repeat various tasks on their own, such as electronics assembling, machine tool installation, etc. The proposed Soft Co-bots exhibit a high potential for safe and intuitive human-robot collaboration in unstructured environments, promoting the immediate practical application of soft robots.


Subject(s)
Equipment Design , Robotics , Robotics/methods , Humans , Equipment Design/methods , Biomimetics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...