Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Iran J Basic Med Sci ; 18(6): 599-603, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26221484

ABSTRACT

OBJECTIVES: The Janus kinase-signal transducers and activators of transcription signaling pathway (JAK/STAT pathway) play an important role in proliferation of breast cancer cells. Previous data showed that inhibition of STAT3 suppresses the growth of breast cancer cells, but the associated mechanisms are not well understood. This study aims to investigate the effect and associated mechanisms of JAK/STAT pathway inhibitor AG490 on proliferation and suppression of breast cancer cells. MATERIALS AND METHODS: CCK-8 assay and trypan blue exclusion assay were used to investigate the cytotoxicity of AG490 to MDA-MB-231 cells. Real-time PCR was used to detect the mRNA level of SARI (suppressor of AP-1, regulated by IFN). Western blot was used to analyze the protein levels of SARI, phospho-STAT3 and total STAT3. Luciferase reporter assay was adopted to explore the mechanism of SARI mRNA upregulation. RESULTS: AG490 suppressed the proliferation of MDA-MB-231 cells in a dose-dependent manner. AG490 significantly up-regulated the mRNA and protein levels of SARI in MDA-MB-231 cells. Knockdown of SARI obviously attenuated AG490-induced growth suppression effect in MDA-MB-231 cells. Furthermore, AG490 dramatically enhanced the transcription activity of SARI promoter. But the transcription activity of truncated SARI promoter, which does not contain STAT3 binding site, cannot be activated by AG490 treatment. CONCLUSION: We demonstrate in this study that AG490 suppresses the proliferation of MDA-MB-231 cells through transcriptional activation of SARI.

2.
World J Gastroenterol ; 18(35): 4934-43, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-23002367

ABSTRACT

AIM: To investigate the correlation of hyperlipemia (HL) and acute cerebral ischemia/reperfusion (I/R) injury on liver damage and its mechanism. METHODS: Rats were divided into 4 groups: control, HL, I/R and HL+I/R. After the induction of HL via a high-fat diet for 18 wk, middle cerebral artery occlusion was followed by 24 h of reperfusion to capture I/R. Serum alanine transaminase (ALT) and aspartate aminotransferase (AST) were analyzed as part of liver function tests and liver damage was further assessed by histological examination. Hepatocyte apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. The expression of genes related to apoptosis (caspase-3, bcl-2) was assayed by immunohistochemistry and Western blotting. Serum tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1) and liver mitochondrial superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA) and Ca(2+) levels were measured to determine inflammatory and oxidative/antioxidative status respectively. Microsomal hydroxylase activity of the cytochrome P450 2E1 (CYP2E1)-containing enzyme was measured with aniline as the substrate, and CYP2E1 expression in the liver tissue and microsome was determined by immunohistochemistry and Western blotting respectively. RESULTS: HL alone induced by high-fat diet for 18 wk resulted in liver damage, indicated by histopathological analysis, and a considerable increase in serum ALT (25.13 ± 16.90 vs 9.56 ± 1.99, P < 0.01) and AST levels (18.01 ± 10.00 vs 11.33 ± 4.17, P < 0.05) compared with control. Moreover, HL alone induced hepatocyte apoptosis, which was determined by increased TUNEL-positive cells (4.47 ± 0.45 vs 1.5 ± 0.22, P < 0.01), higher caspase-3 and lower bcl-2 expression. Interestingly, compared with those in control, HL or I/R groups, massive increases of serum ALT (93.62 ± 24.00 vs 9.56 ± 1.99, 25.13 ± 16.90 or 12.93 ± 6.14, P < 0.01) and AST (82.32 ± 26.92 vs 11.33 ± 4.17, 18.01 ± 10.00 or 14.00 ± 6.19, P < 0.01) levels in HL+I/R group were observed suggesting severe liver damage, which was confirmed by liver histology. In addition, HL combined with I/R also caused significantly increased hepatocyte apoptosis, as evidenced by increased TUNEL-positive cells (6.20 ± 0.29 vs 1.5 ± 0.22, 4.47 ± 0.45 or 1.97 ± 0.47, P < 0.01), elevated expression of caspase-3 and lower expression of bcl-2. Furthermore, when compared to HL or I/R alone, HL plus I/R enhanced serum TNF-α, IL-1, liver mitochondrial MDA and Ca(2+) levels, suppressed SOD and GSH-Px in liver mitochondria, and markedly up-regulated the activity (11.76 ± 2.36 vs 4.77 ± 2.31 or 3.11 ± 1.35, P < 0.01) and expression (3.24 ± 0.38 vs 1.98 ± 0.88 or 1.72 ± 0.58, P < 0.01) of CYP2E1 in liver. CONCLUSION: The coexistence of HL and acute cerebral I/R induces severe liver damage, suggesting that cerebral ischemic stroke would exaggerate the damage of liver caused by HL. This effect is possibly due to enhanced CYP2E1 induction which further promotes oxidative damage, inflammation and hepatocyte apoptosis.


Subject(s)
Brain/blood supply , Hyperlipidemias/complications , Liver Diseases/etiology , Reperfusion Injury/complications , Acute Disease , Alanine Transaminase/blood , Animals , Apoptosis , Aspartate Aminotransferases/blood , Biomarkers/blood , Blotting, Western , Calcium/metabolism , Caspase 3/metabolism , Cytochrome P-450 CYP2E1/metabolism , Diet, High-Fat , Disease Models, Animal , Glutathione Peroxidase/metabolism , Hyperlipidemias/etiology , Hyperlipidemias/metabolism , Immunohistochemistry , In Situ Nick-End Labeling , Infarction, Middle Cerebral Artery/complications , Interleukin-1/blood , Liver/metabolism , Liver/pathology , Liver Diseases/blood , Liver Diseases/pathology , Male , Malondialdehyde/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Sprague-Dawley , Reperfusion Injury/etiology , Reperfusion Injury/metabolism , Superoxide Dismutase/metabolism , Time Factors , Tumor Necrosis Factor-alpha/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...