Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Mol Biomed ; 5(1): 15, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679629

ABSTRACT

Tuberculosis (TB) is an infectious disease that significantly threatens human health. However, the differential diagnosis of latent tuberculosis infection (LTBI) and active tuberculosis (ATB) remains a challenge for clinicians in early detection and preventive intervention. In this study, we developed a novel biomarker named HP16118P, utilizing 16 helper T lymphocyte (HTL) epitopes, 11 cytotoxic T lymphocyte (CTL) epitopes, and 8 B cell epitopes identified from 15 antigens associated with LTBI-RD using the IEDB database. We analyzed the physicochemical properties, spatial structure, and immunological characteristics of HP16118P using various tools, which indicated that it is a hydrophilic and relatively stable alkaline protein. Furthermore, HP16118P exhibited good antigenicity and immunogenicity, while being non-toxic and non-allergenic, with the potential to induce immune responses. We observed that HP16118P can stimulate the production of high levels of IFN-γ+ T lymphocytes in individuals with ATB, LTBI, and health controls. IL-5 induced by HP16118P demonstrated potential in distinguishing LTBI individuals and ATB patients (p=0.0372, AUC=0.8214, 95% CI [0.5843 to 1.000]) with a sensitivity of 100% and specificity of 71.43%. Furthermore, we incorporated the GM-CSF, IL-23, IL-5, and MCP-3 induced by HP16118P into 15 machine learning algorithms to construct a model. It was found that the Quadratic discriminant analysis model exhibited the best diagnostic performance for discriminating between LTBI and ATB, with a sensitivity of 1.00, specificity of 0.86, and accuracy of 0.93. In summary, HP16118P has demonstrated strong antigenicity and immunogenicity, with the induction of GM-CSF, IL-23, IL-5, and MCP-3, suggesting their potential for the differential diagnosis of LTBI and ATB.


Subject(s)
Biomarkers , Latent Tuberculosis , Mycobacterium tuberculosis , Humans , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Biomarkers/blood , Diagnosis, Differential , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Latent Tuberculosis/diagnosis , Latent Tuberculosis/immunology , Mycobacterium tuberculosis/immunology
4.
MedComm (2020) ; 5(1): e419, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38188605

ABSTRACT

Although tuberculosis (TB) is an infectious disease, the progression of the disease following Mycobacterium tuberculosis (MTB) infection is closely associated with the host's immune response. In this review, a comprehensive analysis of TB prevention, diagnosis, and treatment was conducted from an immunological perspective. First, we delved into the host's immune response mechanisms against MTB infection as well as the immune evasion mechanisms of the bacteria. Addressing the challenges currently faced in TB diagnosis and treatment, we also emphasized the importance of protein, genetic, and immunological biomarkers, aiming to provide new insights for early and personalized diagnosis and treatment of TB. Building upon this foundation, we further discussed intervention strategies involving chemical and immunological treatments for the increasingly critical issue of drug-resistant TB and other forms of TB. Finally, we summarized TB prevention, diagnosis, and treatment challenges and put forward future perspectives. Overall, these findings provide valuable insights into the immunological aspects of TB and offer new directions toward achieving the WHO's goal of eradicating TB by 2035.

6.
Mil Med Res ; 10(1): 58, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017571

ABSTRACT

Latent tuberculosis infection (LTBI) has become a major source of active tuberculosis (ATB). Although the tuberculin skin test and interferon-gamma release assay can be used to diagnose LTBI, these methods can only differentiate infected individuals from healthy ones but cannot discriminate between LTBI and ATB. Thus, the diagnosis of LTBI faces many challenges, such as the lack of effective biomarkers from Mycobacterium tuberculosis (MTB) for distinguishing LTBI, the low diagnostic efficacy of biomarkers derived from the human host, and the absence of a gold standard to differentiate between LTBI and ATB. Sputum culture, as the gold standard for diagnosing tuberculosis, is time-consuming and cannot distinguish between ATB and LTBI. In this article, we review the pathogenesis of MTB and the immune mechanisms of the host in LTBI, including the innate and adaptive immune responses, multiple immune evasion mechanisms of MTB, and epigenetic regulation. Based on this knowledge, we summarize the current status and challenges in diagnosing LTBI and present the application of machine learning (ML) in LTBI diagnosis, as well as the advantages and limitations of ML in this context. Finally, we discuss the future development directions of ML applied to LTBI diagnosis.


Subject(s)
Latent Tuberculosis , Tuberculosis , Humans , Latent Tuberculosis/diagnosis , Artificial Intelligence , Epigenesis, Genetic , Tuberculosis/diagnosis , Machine Learning , Biomarkers
7.
Front Immunol ; 14: 1280299, 2023.
Article in English | MEDLINE | ID: mdl-38022558

ABSTRACT

Introduction: The Bacillus Calmette-Guérin (BCG) vaccine, currently used against tuberculosis (TB), exhibits inconsistent efficacy, highlighting the need for more potent TB vaccines. Materials and methods: In this study, we employed reverse vaccinology techniques to develop a promising multi-epitope vaccine (MEV) candidate, called PP13138R, for TB prevention. PP13138R comprises 34 epitopes, including B-cell, cytotoxic T lymphocyte, and helper T lymphocyte epitopes. Using bioinformatics and immunoinformatics tools, we assessed the physicochemical properties, structural features, and immunological characteristics of PP13138R. Results: The vaccine candidate demonstrated excellent antigenicity, immunogenicity, and solubility without any signs of toxicity or sensitization. In silico analyses revealed that PP13138R interacts strongly with Toll-like receptor 2 and 4, stimulating innate and adaptive immune cells to produce abundant antigen-specific antibodies and cytokines. In vitro experiments further supported the efficacy of PP13138R by significantly increasing the population of IFN-γ+ T lymphocytes and the production of IFN-γ, TNF-α, IL-6, and IL-10 cytokines in active tuberculosis patients, latent tuberculosis infection individuals, and healthy controls, revealing the immunological characteristics and compare the immune responses elicited by the PP13138R vaccine across different stages of Mycobacterium tuberculosis infection. Conclusion: These findings highlight the potential of PP13138R as a promising MEV candidate, characterized by favorable antigenicity, immunogenicity, and solubility, without any toxicity or sensitization.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Tuberculosis/prevention & control , BCG Vaccine , Immunization , Cytokines , Epitopes, T-Lymphocyte
9.
J Korean Med Sci ; 38(42): e343, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37904656

ABSTRACT

In the context of the coronavirus disease 2019 (COVID-19) pandemic, Bacillus Calmette-Guérin (BCG), a tuberculosis (TB) vaccine, has been investigated for its potential to prevent COVID-19 with conflicting outcomes. Currently, over 50 clinical trials have been conducted to assess the effectiveness of BCG in preventing COVID-19, but the results have shown considerable variations. After scrutinizing the data, it was discovered that some trials had enrolled individuals with active TB, latent TB infection, or a history of TB. This finding raises concerns about the reliability and validity of the trial outcomes. In this study, we explore the potential consequences of including these participants in clinical trials, including impaired host immunity, immune exhaustion, and the potential masking of the BCG vaccine's protective efficacy against COVID-19 by persistent mycobacterial infections. We also put forth several suggestions for future clinical trials. Our study underscores the criticality of excluding individuals with active or latent TB from clinical trials evaluating the efficacy of BCG in preventing COVID-19.


Subject(s)
COVID-19 , Latent Tuberculosis , Tuberculosis , Humans , BCG Vaccine/therapeutic use , COVID-19/prevention & control , Latent Tuberculosis/drug therapy , Latent Tuberculosis/prevention & control , Reproducibility of Results , Tuberculosis/drug therapy , Tuberculosis/prevention & control , Clinical Trials as Topic
10.
Int Immunopharmacol ; 124(Pt B): 111064, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37857122

ABSTRACT

BACKGROUND: Although the incidence of non-tuberculous mycobacterial pulmonary disease (NTM-PD) is increasing annually, it is easily misdiagnosed as pulmonary tuberculosis (PTB). This study aimed to screen and identify the immunological and radiological characteristics that differentiate NTM-PD from PTB and to construct a discriminatory diagnostic model for NTM-PD, providing new tools for its differential diagnosis. METHODS: Hospitalised patients diagnosed with NTM-PD or PTB between January 2019 and June 2023 were included in the study. Immunological and radiological characteristics were compared between the two groups. Based on the selected differential features, a logistic regression algorithm was used to construct a discriminatory diagnostic model for NTM-PD, and its diagnostic performance was preliminarily analysed. RESULTS: Patients with NTM-PD were significantly older than those with PTB and the tuberculosis-specific interferon-gamma release assay (TB-IGRA) positivity rate was significantly lower in the NTM-PD group. Moreover, the absolute counts of total T lymphocytes, CD4+ T lymphocytes, CD8+ T lymphocytes, NK cells, and B lymphocytes were significantly lower in patients with NTM-PD and PTB than in healthy controls. Additionally, patients with NTM-PD had a significantly lower absolute count of B lymphocytes than the PTB group. Radiological analysis revealed significant differences between patients with NTM-PD and PTB in terms of cavity wall thickness, bronchial dilation, lung consolidation, pulmonary nodule size, pulmonary emphysema, lung bullae, lymph node calcification, pleural effusion, mediastinal and hilar lymphadenopathy, and the tree-in-bud sign. Bronchial dilation was identified as the predominant risk factor of NTM-PD, whereas TB-IGRA positivity, lymph node calcification, pleural effusion, and mediastinal and hilar lymphadenopathies were protective factors. Based on this, we constructed a discriminatory diagnostic model for NTM-PD. Its receiver operating characteristic curve demonstrated good diagnostic performance, with an area under the curve of 0.938. At the maximum Youden index of 0.746, the sensitivity and specificity were 0.835 and 0.911, respectively. CONCLUSIONS: Patients with NTM-PD and PTB exhibited impaired humoral and cellular immune functions as well as significant differences in radiological features. The constructed NTM-PD diagnostic model demonstrated good diagnostic performance. This study provides a new tool for the differential diagnosis of NTM-PD.


Subject(s)
Lung Diseases , Mycobacterium Infections, Nontuberculous , Pleural Effusion , Tuberculosis, Pulmonary , Tuberculosis , Humans , Case-Control Studies , Diagnosis, Differential , Tuberculosis, Pulmonary/diagnostic imaging , Mycobacterium Infections, Nontuberculous/diagnostic imaging , Lung Diseases/diagnostic imaging , Nontuberculous Mycobacteria , Retrospective Studies
11.
iScience ; 26(10): 107881, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37841590

ABSTRACT

Lung cancer (LC) and tuberculosis (TB) are two major global public health problems, and the incidence of LC-TB is currently on the rise. Therefore effective clinical interventions are crucial for LC-TB. The aim of this review is to provide up-to-date information on the immunological profile and therapeutic biomarkers in patients with LC-TB. We discuss the immune mechanisms involved, including the immune checkpoints that play an important role in the treatment of patients with LC-TB. In addition, we explore the susceptibility of patients with LC to TB and summarise the latest research on LC-TB. Finally, we discuss future prospects in this field, including the identification of potential targets for immune intervention. In conclusion, this review provides important insights into the complex relationship between LC and TB and highlights new advances in the detection and treatment of both diseases.

12.
Vaccines (Basel) ; 11(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37631874

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a prevalent global infectious disease and a leading cause of mortality worldwide. Currently, the only available vaccine for TB prevention is Bacillus Calmette-Guérin (BCG). However, BCG demonstrates limited efficacy, particularly in adults. Efforts to develop effective TB vaccines have been ongoing for nearly a century. In this review, we have examined the current obstacles in TB vaccine research and emphasized the significance of understanding the interaction mechanism between MTB and hosts in order to provide new avenues for research and establish a solid foundation for the development of novel vaccines. We have also assessed various TB vaccine candidates, including inactivated vaccines, attenuated live vaccines, subunit vaccines, viral vector vaccines, DNA vaccines, and the emerging mRNA vaccines as well as virus-like particle (VLP)-based vaccines, which are currently in preclinical stages or clinical trials. Furthermore, we have discussed the challenges and opportunities associated with developing different types of TB vaccines and outlined future directions for TB vaccine research, aiming to expedite the development of effective vaccines. This comprehensive review offers a summary of the progress made in the field of novel TB vaccines.

13.
Environ Sci Pollut Res Int ; 30(43): 96647-96659, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37580473

ABSTRACT

Profiting from a series of anti-tuberculosis programs in China, the number of tuberculosis (TB) cases has diminished dramatically in the past decades. However, long-term spatial-temporal variations, regional trends of prevalence, and mechanisms of determinant factors remain unclear. Age-period-cohort analysis and Bayesian space-time hierarchy statistics were conducted to identify high-risk populations and areas in mainland China, and the geographical detector model was used to evaluate the important drivers of the disease. The prevalence of pulmonary TB has declined from 73.3/100,000 in 2004 to 55.45/100,000 in 2018. A bimodal distribution was found in age groups, and the birth cohorts before 1978 had relative higher risk. The high-risk areas were mainly distributed in western China and south-central China, and several provinces in eastern China showed a potential increasing trend, including Beijing, Shanghai, Liaoning, and Guangdong province. The index of night light (Q = 0.46), the population density (Q = 0.41), PM10 (Q = 0.38), urbanization rate (Q = 0.32), and PM 2.5 (Q = 0.31) contributed substantially to the spatial distribution of pulmonary tuberculosis. The identifications of epidemic patterns, high-risk areas and influence factors would help design targeted intervention measures to achieve milestones of the end TB strategy.


Subject(s)
Tuberculosis, Pulmonary , Tuberculosis , Humans , China/epidemiology , Bayes Theorem , Spatio-Temporal Analysis , Tuberculosis, Pulmonary/epidemiology , Tuberculosis/epidemiology
14.
Front Cell Infect Microbiol ; 13: 1205225, 2023.
Article in English | MEDLINE | ID: mdl-37424783

ABSTRACT

Background: The incidence of non-tuberculous mycobacterial pulmonary disease (NTM-PD) has increased in recent years. However, the clinical and immunologic characteristics of NTM-PD patients have received little attention. Methods: NTM strains, clinical symptoms, underlying diseases, lung CT findings, lymphocyte subsets, and drug susceptibility tests (DSTs) of NTM-PD patients were investigated. Then, the counts of immune cells of NTM-PD patients and their correlation were evaluated using principal component analysis (PCA) and correlation analysis. Results: 135 NTM-PD patients and 30 healthy controls (HCs) were enrolled from 2015 to 2021 in a certain tertiary hospital in Beijing. The number of NTM-PD patients increased every year, and Mycobacterium intracellulare (M. intracellulare), M. abscessus, M. avium, and M. kansasii were the major pathogens of NTM-PD. The main clinical symptoms of NTM-PD patients were cough and sputum production, and the primary lung CT findings were thin-walled cavity, bronchiectasis, and nodules. In addition, we identified 23 clinical isolates from 87 NTM-PD patients with strain records. The DST showed that almost all of M. abscessus and M. avium and more than half of the M. intracellulare and M. avium complex groups were resistant to anti-tuberculosis drugs tested in this study. M. xenopi was resistant to all aminoglycosides. M. kansasii was 100% resistant to kanamycin, capreomycin, amikacin, and para-aminosalicylic acid, and sensitive to streptomycin, ethambutol, levofloxacin, azithromycin, and rifamycin. Compared to other drugs, low resistance to rifabutin and azithromycin was observed among NTM-PD isolates. Furthermore, the absolute counts of innate and adaptive immune cells in NTM-PD patients were significantly lower than those in HCs. PCA and correlation analysis revealed that total T, CD4+, and CD8+ T lymphocytes played an essential role in the protective immunity of NTM-PD patients, and there was a robust positive correlation between them. Conclusion: The incidence of NTM-PD increased annually in Beijing. Individuals with bronchiectasis and COPD have been shown to be highly susceptible to NTM-PD. NTM-PD patients is characterized by compromised immune function, non-specific clinical symptoms, high drug resistance, thin-walled cavity damage on imaging, as well as significantly reduced numbers of both innate and adaptive immune cells.


Subject(s)
Bronchiectasis , Lung Diseases , Mycobacterium Infections, Nontuberculous , Humans , Nontuberculous Mycobacteria , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/epidemiology , Follow-Up Studies , Tertiary Care Centers , Azithromycin , Lung Diseases/microbiology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use
15.
Front Public Health ; 11: 1136355, 2023.
Article in English | MEDLINE | ID: mdl-37497034

ABSTRACT

Background: Tuberculosis (TB) prevention and control among groups living together, such as students, workers, older adults in nursing homes, and prisoners, present many challenges due to their particular age and environmental factors, which can make them more susceptible to TB clusters with significant societal impact. This study aimed to evaluate a TB cluster outbreak epidemic in a university and provide suggestions for improving TB control strategies for groups living together. Methods: Pulmonary TB screening and close-contact investigation were conducted using acid-fast staining, sputum culture, GeneXpert testing, tuberculin skin testing (TST), interferon-gamma release assay (IGRA), and chest computed tomography (CT). GraphPad Prism 9.5.1 was utilized for data analysis. Collected epidemic data were comprehensively analyzed by rate comparison. Results: The TB cluster outbreak epidemic was identified with an index case confirmed positive. The initial screening was conducted on potential close contacts of the index case, and the TST's positive rate (diameter ≥ 5 mm) and strong positive rate (diameter ≥ 15 mm) among these close contacts were 65.60% (21/32) and 34.40% (11/32), respectively. Moreover, the latent TB infection (LTBI) rate (diameter ≥ 10 mm) was 43.75% (14/32), and the IGRA's positive rate was 9.30% (3/32). Chest CT scans did not reveal any abnormalities. Surprisingly, 5 of the close contacts developed active TB in the second screening, accompanied by changes from negative to positive TST and/or IGRA results, after 3 months of follow-up. Accordingly, we expanded the screening scope to include another 28 general contacts. We found that the positive rate (78.00%, 25/32), strong positive rate (50.00%, 16/32), and LTBI rate (62.50%, 20/32) of the 32 close contacts were significantly higher than those of the additional general contacts (28.00%, 8/28; 14.3%, 4/28; 25.00%, 7/28), as indicated by p < 0.05. Conclusion: In the event of an epidemic TB outbreak, it is essential to rapidly identify the source of infection and initiate timely screening of close contacts. The initial screening should be focused on individuals without LTBI, who are at higher risk of developing TB. In purified protein derivative-negative individuals living in groups, additional vaccination or revaccination with Bacille Calmette-Guérin may help prevent cluster outbreaks of TB.


Subject(s)
Tuberculosis, Pulmonary , Tuberculosis , Humans , Disease Outbreaks , Interferon-gamma Release Tests/methods , Tuberculin Test/methods , Tuberculosis/diagnosis , Tuberculosis/epidemiology , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/epidemiology , Male , Female , Adult , China/epidemiology , Disease Susceptibility , Universities
17.
Chemosphere ; 337: 139232, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37364637

ABSTRACT

It is challenging to conduct groundwater contamination risk assessment in fractured aquifers containing a large number of complex fractures, especially in a situation where the uncertainty of massive fractures and fluid-rock interactions is inevitable. In this study, a novel probabilistic assessment framework based on discrete fracture network (DFN) modeling is proposed to assess the uncertainty of groundwater contamination in fractured aquifers. The Monte Carlo simulation technique is employed to quantify the uncertainty of fracture geometry, and the environmental and health risks of the contaminated site are probabilistically analyzed in conjunction with the water quality index (WQI) and hazard index (HI). The results show that the contaminant transport behavior in fractured aquifers can be strongly affected by the distribution of the fracture network. The proposed framework of groundwater contamination risk assessment is capable of practically accounting for the uncertainties involved in the mass transport process and effectively assessing the contamination risk of fractured aquifers.


Subject(s)
Groundwater , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis
18.
Vaccines (Basel) ; 11(4)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37112768

ABSTRACT

Background: Latent tuberculosis infection (LTBI) is the primary source of active tuberculosis (ATB), but a preventive vaccine against LTBI is lacking. Methods: In this study, dominant helper T lymphocyte (HTL), cytotoxic T lymphocyte (CTL), and B-cell epitopes were identified from nine antigens related to LTBI and regions of difference (RDs). These epitopes were used to construct a novel multiepitope vaccine (MEV) based on their antigenicity, immunogenicity, sensitization, and toxicity. The immunological characteristics of the MEV were analyzed with immunoinformatics technology and verified by enzyme-linked immunospot assay and Th1/Th2/Th17 cytokine assay in vitro. Results: A novel MEV, designated PP19128R, containing 19 HTL epitopes, 12 CTL epitopes, 8 B-cell epitopes, toll-like receptor (TLR) agonists, and helper peptides, was successfully constructed. Bioinformatics analysis showed that the antigenicity, immunogenicity, and solubility of PP19128R were 0.8067, 9.29811, and 0.900675, respectively. The global population coverage of PP19128R in HLA class I and II alleles reached 82.24% and 93.71%, respectively. The binding energies of the PP19128R-TLR2 and PP19128R-TLR4 complexes were -1324.77 kcal/mol and -1278 kcal/mol, respectively. In vitro experiments showed that the PP19128R vaccine significantly increased the number of interferon gamma-positive (IFN-γ+) T lymphocytes and the levels of cytokines, such as IFN-γ, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-10. Furthermore, positive correlations were observed between PP19128R-specific cytokines in ATB patients and individuals with LTBI. Conclusions: The PP19128R vaccine is a promising MEV with excellent antigenicity and immunogenicity and no toxicity or sensitization that can induce robust immune responses in silico and in vitro. This study provides a vaccine candidate for the prevention of LTBI in the future.

19.
J Pers Med ; 13(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36983589

ABSTRACT

BACKGROUND: Tuberculosis (TB) is an old infectious disease caused by Mycobacterium tuberculosis infection. Vaccination is the most effective way to prevent and control TB. However, there is relatively little literature that systematically analyzes the progress of new TB vaccine research from a bibliometric perspective. This study was conducted to examine the development of TB vaccines over the past 20 years and to identify research priorities and directions for the future. METHODS: The Science Citation Index Expanded (SCI-E) of the Web of Science Core Collection (WOSCC) database was selected to search the literature related to TB vaccines. The countries, institutions, authors, journals, references, and keywords of each publication were analyzed and visualized using the VOSviewer, CiteSpace, and Bibliometrix software. Furthermore, GraphPad Prism and Microsoft Excel 365 were also used for statistical analysis. RESULTS: As of 20 October 2022, 7960 publications related to TB vaccines were identified with 288,478 citations. The United States of America (USA) accounted for the largest share (2658, 33.40%), followed by the United Kingdom (UK, 1301, 16.34%), and China (685, 8.6%). Regarding affiliations, the University of London had the most publications (427) and shared the highest H-index (76) with the Statens Serum Institut of Denmark. In terms of the number of articles for the journals and authors, the journal Vaccine ranked first with 629 articles. Professor Peter Anderssen has published the highest number of papers (160). The burst keywords and thematic maps analysis showed that future trends in TB vaccine development would focus on exploring the interaction mechanisms between M. tuberculosis and the host. CONCLUSION: The number of publications on TB vaccines has grown over the past two decades. Developed countries play a significant role in TB vaccine research, and developing countries are fast catching up. We believe that future research will be aimed at understanding the fine molecular mechanisms of host-pathogen interaction, leading to the development of better TB vaccines.

20.
Front Immunol ; 14: 1110843, 2023.
Article in English | MEDLINE | ID: mdl-36860878

ABSTRACT

Background: About a quarter of the world's population with latent tuberculosis infection (LTBI) are the main source of active tuberculosis. Bacillus Calmette Guerin (BCG) cannot effectively control LTBI individuals from developing diseases. Latency-related antigens can induce T lymphocytes of LTBI individuals to produce higher IFN-γ levels than tuberculosis patients and normal subjects. Herein, we firstly compared the effects of M. tuberculosis (MTB) ag85ab and 7 latent DNA vaccines on clearing latent MTB and preventing its activation in the mouse LTBI model. Methods: A mouse LTBI model was established, and then immunized respectively with PBS, pVAX1 vector, Vaccae vaccine, ag85ab DNA and 7 kinds of latent DNAs (including rv1733c, rv2660c, rv1813c, rv2029c, rv2628, rv2659c and rv3407) for three times. The mice with LTBI were injected with hydroprednisone to activate the latent MTB. Then, the mice were sacrificed for the bacterial count, histopathological examination, and immunological evaluation. Results: Using chemotherapy made the MTB latent in the infected mice, and then using hormone treatment reactivated the latent MTB, indicating that the mouse LTBI model was successfully established. After the mouse LTBI model was immunized with the vaccines, the lung colony-forming units (CFUs) and lesion degree of mice in all vaccines group were significantly decreased than those in the PBS group and vector group (P<0.0001, P<0.05). These vaccines could induce antigen-specific cellular immune responses. The number of IFN-γ effector T cells spots secreted by spleen lymphocytes in the ag85ab DNA group was significantly increased than those in the control groups (P<0.05). In the splenocyte culture supernatant, IFN-γ and IL-2 levels in the ag85ab, rv2029c, and rv2659c DNA groups significantly increased (P<0.05), and IL-17A levels in ag85ab and rv2659c DNA groups also significantly increased (P<0.05). Compared with the PBS and vector groups, the proportion of CD4+CD25+FOXP3+ regulatory T cells in spleen lymphocytes of ag85ab, rv2660c, rv2029c, and rv3407 DNA groups were significantly reduced (P<0.05). Conclusions: MTB ag85ab and 7 kinds of latent DNA vaccines showed immune preventive efficacies on a mouse model of LTBI, especially the rv2659c, and rv1733c DNA. Our findings will provide candidates for the development of new multi-stage vaccines against TB.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Vaccines, DNA , Animals , Mice , Latent Tuberculosis/prevention & control , Biological Transport , DNA , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...