Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Discov Today ; 29(3): 103906, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309689

ABSTRACT

Antimetastatic agents are highly desirable for cancer treatment because of the severe medical challenges and high mortality resulting from tumor metastasis. Having demonstrated antimetastatic effects in numerous in vitro and in vivo studies, migration inhibitors present significant opportunities for developing a new class of anticancer drugs. To provide a useful overview on the latest research in migration inhibitors, this article first discusses their therapeutic significance, targetable proteins, and developmental avenues. Subsequently it reviews over 20 representative migration inhibitors reported in recent journals in terms of their inhibitory mechanism, potency, and potential clinical utility. The relevance of the target proteins to cellular migratory function is focused on as it is crucial for assessing the overall efficacy of the inhibitors.


Subject(s)
Antineoplastic Agents , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Movement , Neoplasm Metastasis/drug therapy , Cell Line, Tumor
2.
Mikrochim Acta ; 190(3): 101, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36821056

ABSTRACT

A bimetallic polycrystalline sensor (Cr/Fe-SNCM) having nanosized and high dispersion was designed and used for the electrochemical simultaneous determination of dopamine (DA) and uric acid (UA). Catalytic nanosized Cr/Fe were highly anchored on N/S/O-contained porous carbon with high dispersion and polycrystalline Cr/Fe via energetic mechanochemical method and high-temperature carbonization. The obtained Cr/Fe-SNCM exhibited high graphitized carbon supporter and endowed high electron transport and signal output for the whole sensor. Moreover, highly dispersed Cr/Fe sites and the polycrystalline form (metal-N/S/O) efficiently enhanced the catalytic reaction, leading to a limits of detection (based on the 3σ/m criterion) of 25.8 and 22.5 nM for DA and UA, respectively. This is 1-2 orders of magnitude lower than many state-of-the-art reported sensors. The Cr/Fe-SNCM1.0 sensor exhibited wide working range (0.1 to 10.0 µM), high recovery (96-103%) and low relative standard deviation (RSD = 3.2-4.7%) for DA and UA in real serum samples, possessing high significance for practical large-scale applications.

3.
J Colloid Interface Sci ; 624: 121-136, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35660881

ABSTRACT

In the photo-Fenton reactions, fast recombination of photoinduced electrons and holes in Fe-based metal-organic frameworks (Fe-MOFs) slows Fe(III)/Fe(II) cycle, which remains big challenge that significantly retards the overall process. Herein, NH2-MIL-88B(Fe) (NM88) was modified with 3,5-diaminobenzoic acid (DB) and TPB-DMTP-COF (COF-OMe) to in situ construct NM88(DB)0.85/COF-OMe composite that could strongly harvest the visible light for photo-Fenton degradation of sulfamerazine (SMR). With the addition of DB, electron-donating effect of NM88 was strengthened, which then promoted amino groups to react with aldehyde groups (Schiff-base), and thus highly facilitated the interfacial contact between NM88 and COF-OMe. Such modifications increased the degradation rate constants for NM88(DB)0.85/COF-OMe to 15.1 and 17.3 times that of NM88 and COF-OMe respectively with good reusability. Moreover, the catalyst exhibited 32-170 times higher degradation kinetics in comparison to other reported catalysts. Results showed that due to the Schiff-base reaction between NM88(DB) and COF-OMe, electron density on Fe(III) was decreased; and the photogenerated electrons of COF-OMe moved to NM88(DB) to reduce Fe(III), thus resulting in the generation of highly active Fe(II) and ·OH species. Furthermore, the main reactive species were determined to be ·OH and ·O2- by trapping experiments, and a possible mechanism of the degradation system followed Z-scheme charge transfer.


Subject(s)
Ferric Compounds , Sulfamerazine , Electronics , Ferrous Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...