Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 471: 134337, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38640674

ABSTRACT

BACKGROUND: Hexafluoropropylene oxide trimer acid (HFPO-TA), a perfluorooctanoic acid (PFOA) substitute, exhibited strong affinity and capability to activate peroxisome proliferator activated receptor gamma (PPARγ), a lipid metabolism regulator, suggesting potential to induce metabolic toxicities. METHODS: Fertile chicken eggs were exposed to 0, 0.5, 1 or 2 mg/kg (egg weight) HFPO-TA and incubated until hatch. Serum from 0- and 3- month-old chickens were subjected to liquid chromatography ultra-high resolution mass spectrometry for HFPO-TA concentration, while liver, pancreas and adipose tissue samples were collected for histopathological assessments. In ovo PPARγ reporter and silencing system were established with lentivirus microinjection. qRT-PCR and immunohistochemistry were utilized to evaluate the expression levels of PPARγ downstream genes. RESULTS: In 3-month-old animals developmentally exposed to HFPO-TA, adipose tissue hyperplasia, hepatic steatosis, pancreas islet hypertrophy and elevated serum free fatty acid / insulin levels were observed. Results of reporter assay and qRT-PCR indicated HFPO-TA-mediated PPARγ transactivation in chicken embryo. Silencing of PPARγ alleviated HFPO-TA-induced changes, while PPARγ agonist rosiglitazone mimicked HFPO-TA-induced effects. qRT-PCR and immunohistochemistry revealed that FASN and GPD1 were upregulated following developmental exposure to HFPO-TA in 3-month-old animals. CONCLUSIONS: Developmental exposure to HFPO-TA induced persistent metabolic toxicities in chickens, in which PPARγ played a central role.


Subject(s)
Fluorocarbons , PPAR gamma , Animals , PPAR gamma/genetics , PPAR gamma/metabolism , Fluorocarbons/toxicity , Chick Embryo , Liver/drug effects , Liver/metabolism , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Chickens , Pancreas/drug effects , Pancreas/metabolism
2.
Ecotoxicol Environ Saf ; 271: 115909, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199220

ABSTRACT

OBJECTIVE: The effects of air pollution on metabolism have become a popular research topic, and a large number of studies had confirmed that air pollution exposure could induce insulin resistance (IR) to varying degrees, but the results were inconsistent, especially for the long-term exposures. The aim of the current study was to further investigate the potential effects of air pollution on IR. METHODS: A systematic review and meta-analysis of four electronic databases, including PubMed, Embase, Web of Science and Cochrane were conducted, searching for relevant studies published before June 10, 2023, in order to explore the potential relationships between long-term exposure to air pollution and IR. A total of 10 studies were included for data analysis, including seven cohort studies and three cross-sectional studies. Four major components of air pollution, including PM2.5 (particulate matter with an aerodynamic diameter of 2.5 µm or less), PM10 (particulate matter with an aerodynamic diameter of 10 µm or less), NO2, and SO2 were selected, and each analyzed for the potential impacts on insulin resistance, in the form of adjusted percentage changes in the homeostasis assessment model of insulin resistance (HOMA-IR). RESULTS: This systematic review and meta-analysis showed that for every 1 µg/m³ increase in the concentration of selected air pollutants, PM2.5 induced a 0.40% change in HOMA-IR (95%CI: -0.03, 0.84; I2 =67.4%, p = 0.009), while PM10 induced a 1.61% change (95%CI: 0.243, 2.968; I2 =49.1%, p = 0.001). Meanwhile, the change in HOMA-IR due to increased NO2 or SO2 exposure concentration was only 0.09% (95%CI: -0.01, 0.19; I2 =83.2%, p = 0.002) or 0.01% (95%CI: -0.04, 0.06; I2 =0.0%, p = 0.638), respectively. CONCLUSIONS: Long-term exposures to PM2.5, PM10, NO2 or SO2 are indeed associated with the odds of IR. Among the analyzed pollutants, inhalable particulate matters appear to exert greater impacts on IR.


Subject(s)
Air Pollutants , Air Pollution , Insulin Resistance , Humans , Nitrogen Dioxide/analysis , Cross-Sectional Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/toxicity , Air Pollutants/analysis , Particulate Matter/toxicity , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...