Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 41(3): 1384-1392, 2020 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-32608640

ABSTRACT

In this study, a novel process combining partial denitrification (PD, NO3--N→NO2--N) and denitrifying phosphorus removal (DPR) in an anaerobic-anoxic-aerobic sequencing batch reactor (SBR) was developed. By comprehensively controlling the influent C/N ratio, anaerobic drainage ratio, and anoxic duration, the nitrite accumulation and phosphorus removal performance of a system treating high-strength nitrate and municipal wastewaters was investigated. The results showed that, after 140 days, the nitrate-to-nitrite transformation ratio (NTR) was 80.1%, and PO43--P removal efficiency was 97.64%. In the anaerobic stage (180 min), glycogen-accumulating organisms (GAOs) and phosphorus-accumulating organisms (PAOs) efficiently utilized the carbon source in municipal wastewater to enhance intracellular carbon storage. In the anoxic stage (150 min), denitrifying GAOs (DGAOs) and heterotrophic denitrifying bacteria (DOHOs) carried out endogenous and exogenous short-range denitrification, respectively, to achieve stable nitrite accumulation; simultaneously, denitrifying PAOs (DPAOs) carried out denitrifying phosphorus uptake to achieve efficient phosphorus removal. In the aerobic stage (10 min), without initiating ammonia/nitrite oxidation, PAOs absorbed excessive phosphorus, which improved the phosphorus removal performance of the system. The effluent NO2--N/NH4+-N of a ratio of 1.31:1 (close to the theoretical value of ANAMMOX process, 1.32:1), with little PO43--P and COD (0.30 and 12.94 mg·L-1), meets the requirements for deep-level nitrogen removal by coupling with ANAMMOX process.

2.
Huan Jing Ke Xue ; 40(3): 1382-1389, 2019 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-31087988

ABSTRACT

An anaerobic (180 min)/aerobic operated sequencing batch reactor (SBR) fed with urban sewage was optimized by regulating the aeration quantity to investigate the deep-level nitrogen (N) and phosphorus (P) removal. The amount of aeration was regulated by adjusting the volume of gas per unit volume of reactor passed in unit time, when the unit is L·(min·L)-1, from 0.125 L·(min·L)-1 gradually to 0.025 L·(min·L)-1, and aerobic times from 3 h to 6 h. The experimental results show that the effluent NH4+-N, NO2--N, NO3--N, and PO43--P concentrations of the optimized SPNDPR system were 0, 8.62, 0.06, and 0.03 mg·L-1. The effluent TN concentration was about 9.22 mg·L-1, and the TN removal efficiency was up to 87.08%. When the aeration quantity was decreased from 0.125 L·(min·L)-1 to 0.100 L·(min·L)-1; then decreased to 0.075 L·(min·L)-1, the nitrification rate of the system recovered and stabilized at 0.16 mg·(L·min)-1. However, when the aeration quantity continuously decreased to 0.050 L·(min·L)-1 and then to 0.025 L·(min·L)-1, the nitrification rate decreased to 0.09 mg·(L·min)-1 and 0.06 mg·(L·min)-1. With reduction of the aeration quantity[from 0.125 L·(min·L)-1 to 0.100, 0.075, 0.050 and 0.025 L·(min·L)-1] and extension of aerobic time (from 3 h to 6 h), the TN removal efficiency increased gradually from 62.82% to 87.08%, and the SND efficiency increased from 19.57% to 72.11%. It was proven that reducing the aeration quantity can enhance the SPND function and deep denitrification by the system was realized. By enhancing the anaerobic intracellular carbon storage and aerobic phosphorus uptake, denitrifying phosphorus removal, partial nitrification, and endogenous nitrification were achieved. The SPNDPR system, after reducing aeration and prolonging aerobic time, was able to realize deep-level denitrification and dephosphorization using low C/N urban sewage.

3.
Huan Jing Ke Xue ; 40(1): 360-368, 2019 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-30628294

ABSTRACT

This study focuses on the investigation of the nitrogen (N) and phosphorus (P) removal characteristics of a combination of enhanced phosphorus removal (EBPR) with simultaneous partial nitrification endogenous denitrification (SPND) and post-partial denitrification process. An anaerobic/aerobic/anoxic (A/O/A) operated sequencing batch reactor (SBR) fed with urban sewage was optimized by regulating the aeration rate and anoxic time. Based on this optimization, deep-level nitrogen and phosphorus removals from low C/N urban sewage could be realized. The experimental results show that the effluent PO43--P concentration decreased from 0.06 mg·L-1 to 0 mg·L-1, the effluent NH4+-N, NO2--N, and NO3--N concentrations gradually decreased from 0.18, 18.79, and 0.08 mg·L-1 to 0, 16.46, and 0.05 mg·L-1, respectively, and the TN removal efficiency increased from 72.69% to 77.97% when the aeration rate decreased from 1.0 L·min-1 to 0.6 L·min-1 and the anoxic duration was 180 min. With the reduction of the aeration rate, the SPND phenomenon became notable and the SND rate increased from 19.18% to 31.20%. When the anoxic duration was extended from 180 min to 420 min, the effluent PO43--P, NH4+-N, and NO3--N concentrations stabilized at~0, 0, and 0.03 mg·L-1, respectively. The effluent NO2--N concentration was as low as 3.06 mg·L-1, the SND rate was~32.21%, the TN removal performance gradually improved, and the TN removal efficiency was as high as 99.42%. Thus, deep-level nitrogen and phosphorus removals could be realized with the SPNDPR-PD system.


Subject(s)
Bioreactors , Denitrification , Phosphorus/isolation & purification , Sewage , Waste Disposal, Fluid , Nitrogen/isolation & purification
4.
Huan Jing Ke Xue ; 40(2): 783-790, 2019 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-30628344

ABSTRACT

In order to explore the characteristics of nitrite accumulation during the operational period of partial denitrification in different sludge sources using sodium acetate as a carbon source, No.1 SBR and No.2 SBR were used to inoculate with surplus sludge taken separately from a secondary sedimentation tank of a sewage treatment plant and simultaneous nitrification and denitrifying phosphorus removal system. By reasonably controlling the initial nitrate concentration and anoxic time, partial denitrification was realized. The carbon and nitrogen removal characteristics under different initial COD and NO3--N concentrations were investigated. The results showed that, using sodium acetate as the carbon source, the partial denitrification process in No.1 SBR and No.2 SBR sludge successfully began in 21 d and 20 d, respectively. The accumulation of NO2--N and nitrite accumulation rate (NAR) in reactors were maintained at high levels (12.61 mg·L-1, 79.76% and 13.85 mg·L-1, 87.60%, respectively). When the initial NO3--N concentration of No.2 SBR was 20 mg·L-1 and the initial COD concentration increased from 60 mg·L-1 to 140 mg·L-1, the operation time for achieving the highest NO2--N accumulation in the system was shortened from 160 min to 6 min. The NO3--N ratio of the denitrification rate (in VSS) increased from 3.84 mg·(g·h)-1 to 7.35 mg·(g·h)-1. Increased initial COD concentration was beneficial to the accumulation of NO2--N during partial denitrification. When the initial COD concentration of No.2 SBR was 100 mg·L-1 and the initial NO3--N concentration increased from 20 mg·L-1 to 30 mg·L-1, NAR was maintained above 90% and up to 100% (the initial NO3--N concentration was 25 mg·L-1). When the initial NO3--N concentration was ≥ 35 mg·L-1, insufficient COD caused NO3--N to be completely reduced to NO2--N. Under different initial COD concentrations (80, 100, or 120 mg·L-1) and different initial NO3--N concentrations (20, 25, 30, or 40 mg·L-1), the nitrogen and carbon removal and partial denitrification performance of the No.2 SBR was better than that of No.1 SBR.


Subject(s)
Bioreactors , Denitrification , Nitrites/isolation & purification , Sewage , Sodium Acetate , Biological Oxygen Demand Analysis , Carbon/isolation & purification , Nitrogen/isolation & purification
5.
Huan Jing Ke Xue ; 40(2): 816-822, 2019 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-30628348

ABSTRACT

To determine the performance of nitrogen and phosphorus removal within a simultaneous nitrification endogenous denitrification system (SNEDPR), an extended anaerobic/low aerobic (dissolved oxygen:0.5-2.0 mg·L-1)-operated sequencing batch reactor (SBR) was fed with simulation wastewater. The SBR was initiated under a constant influent C/N ratio of 10, with the simultaneous enrichment of polyphosphate-accumulating organisms (PAOs). It was then investigated at different influent C/N ratios of 10, 7.5, 5, and 2.5. The experimental results indicated that, when the influent C/N ratio was 10, SNEDPR could be successfully started up. The effluent PO43--P and total nitrogen (TN) concentrations were 0.1 mg·L-1 and 8.1 mg·L-1. PO43--P efficiency, TN efficiency, and SNED efficiency were 99.79%, 89.38%, and 58.0%, respectively. When the influent C/N ratio increased from 5 to 10, the nitrogen and phosphorus removal performance of the system improved with PRA, and SNED efficiency increased from 16.0 m·L-1 and 48.0% to 24.4 mg·L-1 and 69.2%, respectively. When the C/N ratio was 10, the TN and PO43--P removal efficiencies increased to 94.5% and 100%, respectfully. When the C/N ratio was decreased to 2.5, the nitrogen and phosphorus removal performance of the system decreased. The PRA and SNED efficiencies were only 1.36 mg·L-1 and 10%, respectively. During the stable phase of the system (C/N ratio were 10, 7.5 and 5), SNED efficiency reached to 85.9%, with the average effluent concentration of NH4+-N, x--N, and PO43--P being 0.0, 8.1, and 0.1 mg·L-1, respectively.


Subject(s)
Bioreactors , Nitrogen/isolation & purification , Phosphorus/isolation & purification , Waste Disposal, Fluid , Carbon , Denitrification , Nitrification , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...