Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
World J Gastrointest Surg ; 16(6): 1681-1690, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983336

ABSTRACT

BACKGROUND: The Da Vinci robot-assisted surgery technique has been widely used in laparoscopic mesangectomy for rectal cancer. However, the short-term efficacy of these procedures compared to traditional laparoscopic surgery remains controversial. The purpose of this study was to compare and analyze the short- and medium-term efficacy of Da Vinci robot and laparoscopic surgery in total mesangectomy (TME) for rectal cancer, so as to provide guidance and reference for clinical practice. AIM: To investigate the safety and long-term efficacy of robotic and laparoscopic total mesorectal resection for the treatment of rectal cancer. METHODS: The clinicopathologic data of 240 patients who underwent TME for rectal cancer in the Anorectal Department of People's Hospital of Xinjiang Uygur Autonomous Region from August 2018 to March 2023 were retrospectively analyzed. Among them, 112 patients underwent laparoscopic TME (L-TME) group, and 128 patients underwent robotic TME (R-TME) group. The intraoperative, postoperative, and follow-up conditions of the two groups were compared. RESULTS: The conversion rate of the L-TME group was greater than that of the R-TME group (5.4% vs 0.8%, χ 2 = 4.417, P = 0.036). The complication rate of the L-TME group was greater than that of the R-TME group (32.1% vs 17.2%, χ 2 = 7.290, P = 0.007). The percentage of positive annular margins in the L-TME group was greater than that in the R-TME group (7.1% vs 1.6%, χ 2 = 4.658, P = 0.031). The 3-year disease-free survival (DFS) rate and overall survival (OS) rate of the L-TME group were lower than those of the R-TME group (74.1% vs 85.2%, χ 2 = 4.962, P = 0.026; 81.3% vs 91.4%, χ 2 = 5.494, P = 0.019); in patients with American Joint Committee on Cancer stage III DFS rate and OS rate in the L-TME group were significantly lower than those in the R-TME group (52.5% vs 76.1%, χ 2 = 5.799, P = 0.016; 65.0% vs 84.8%, χ 2 = 4.787, P = 0.029). CONCLUSION: Compared with the L-TME group, the R-TME group had a better tumor prognosis and was more favorable for patients with rectal cancer, especially for patients with stage III rectal cancer.

2.
Int J Biol Macromol ; 257(Pt 1): 128450, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38035965

ABSTRACT

Kiwifruit (Actinidia spp.) is a commercially important horticultural fruit crop worldwide. Kiwifruit contains numerous minerals, vitamins, and dietary phytochemicals, that not only responsible for the flavor but can also serve as adjuncts in the treatment of diabetes, digestive disorders, cardiovascular system, cancer and heart disease. However, fruit quality and shelf life affect consumer's acceptance and production chain. Understanding the methods of fruit storage preservation, as well as their biochemical, physiological, and molecular basis is essential. In recent years, eco-friendly (comprehensive and environmentally friendly) treatments such as hot water, ozone, chitosan, quercetin, and antifungal additive from biocontrol bacteria or yeast have been applied to improve postharvest fruit quality with longer shelf life. This review provides a comprehensive overview of the latest advancements in control measures, applications, and mechanisms related to water loss, chilling injury, and pathogen diseases in postharvest kiwifruit. Further studies should utilize genome editing techniques to enhance postharvest fruit quality and disease resistance through site-directed bio-manipulation of the kiwifruit genome.


Subject(s)
Actinidia , Food Preservation , Food Preservation/methods , Actinidia/chemistry , Vitamins , Fruit/chemistry , Water/analysis
3.
Front Plant Sci ; 14: 1120166, 2023.
Article in English | MEDLINE | ID: mdl-36959943

ABSTRACT

Kiwifruit is a climacteric fruit, in which the accumulation of flavor substances mainly occurs at the postharvest ripening stage. However, the dynamic changes in metabolite composition remain poorly understood. Here, targeted multi-platform metabolome analysis based on GC-MS and UPLC-MS/MS and enzyme activity analysis were performed at different postharvest ripening stages of kiwifruit. A total of 12 soluble sugars and 31 organic acids were identified. The main soluble sugars are sucrose, glucose and fructose, which exhibited similar variation tendencies along with the extension of ripening. The main organic acids are citric acid, quinic acid and malic acid, which showed different variation patterns. A total of 48 energy metabolites were identified, which were classified into two groups based on the content variation. The content of substances related to the respiratory metabolic pathway decreased gradually along with postharvest ripening, and there was obvious accumulation of downstream products such as amino acids at the late ripening stage. A total of 35 endogenous hormones were identified, among which seven cytokinins were highly accumulated at the later stage of softening. We further investigated the dynamic changes in the activities of 28 ripening-related enzymes. As a result, the activities of 13 enzymes were highly correlated with changes in starch, total pectin, and soluble sugars, and those of seven enzymes were closely associated with the change in firmness. In conclusion, this study comprehensively describes the dynamic changes in soluble sugars, organic acids, hormones, energy substances, and ripening-related enzyme activities during kiwifruit postharvest ripening, and provides a theoretical basis for the postharvest quality improvement of kiwifruit.

4.
Nat Commun ; 13(1): 2534, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35534461

ABSTRACT

The properties of all materials at one atmosphere of pressure are controlled by the configurations of their valence electrons. At extreme pressures, neighboring atoms approach so close that core-electron orbitals overlap, and theory predicts the emergence of unusual quantum behavior. We ramp-compress monovalent elemental sodium, a prototypical metal at ambient conditions, to nearly 500 GPa (5 million atmospheres). The 7-fold increase of density brings the interatomic distance to 1.74 Å well within the initial 2.03 Å of the Na+ ionic diameter, and squeezes the valence electrons into the interstitial voids suggesting the formation of an electride phase. The laser-driven compression results in pressure-driven melting and recrystallization in a billionth of a second. In situ x-ray diffraction reveals a series of unexpected phase transitions upon recrystallization, and optical reflectivity measurements show a precipitous decrease throughout the liquid and solid phases, where the liquid is predicted to have electronic localization. These data reveal the presence of a rich, temperature-driven polymorphism where core electron overlap is thought to stabilize the formation of peculiar electride states.

SELECTION OF CITATIONS
SEARCH DETAIL
...