Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(43): 30066-30078, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37906277

ABSTRACT

Due to their unique structure, abundant properties and potential applications, low-dimensional materials with covalently bonded building blocks through van der Waals (vdW) interactions have sparked widespread interest. Recently, the bulk phase NbS4 consisting of one-dimensional (1D) chains has been synthesized successfully, adding a new member to the group V metallic polychalcogenide family. In the present study, based on density functional theory calculations, we obtained a better understanding of the stability, mechanical properties, electronic structures, transport properties and optical performances of the bulk phase NbS4. Furthermore, the possibility of exfoliating 1D single-chain nanowires from the bulk phase was uncovered. Both bulk phase and 1D nanowires show dynamic, thermal, and mechanical stabilities. The bulk phase possesses an indirect band gap of 1.39 eV with high anisotropic carrier mobilities of 471.814 cm2 s-1 v-1 for electrons (along the b axis direction) and 546.92 cm2 s-1 v-1 for holes (along the a axis direction). The single-chain nanowire exhibits remarkable flexibility and can resist 24% tensile strain along the chain direction. The decreased dimension from the bulk phase to the individual 1D chain not only makes the band gap increase to 1.81 eV but also results in an indirect-to-direct band gap transition, indicating a strong quantum confinement effect. The 1D single-chain nanowire also shows high carrier mobilities of 111.91 cm2 s-1 v-1 for electrons and 316.63 cm2 s-1 v-1 for holes along the chain direction. In addition, both bulk phase and 1D nanowire display excellent visible light absorption performance along the chain direction and the absorption coefficients reach the order of 106 and 105 cm-1. These promising properties render quasi 1D NbS4 as candidate materials for nanoscale applications in high-performance optoelectronic and nanoelectronic devices. The predicted unconventional properties of NbS4 not only provide a meaningful complement to the fascinating quasi 1D material family, but also will attract extensive interest from a wide audience to explore unanticipated properties and design new nanoscale devices based on NbS4.

2.
Phys Chem Chem Phys ; 25(16): 11827-11838, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37067819

ABSTRACT

Two-dimensional (2D) layered palladium dichalcogenides PdX2 (X = S and Se) have attracted increasing interest due to their tunable electronic structure and abundant physicochemical properties. Recently, as the sister material of PdX2, PdSSe has received increasing attention and shows great promise for technological applications and fundamental research. In the present study, we focus on the layer-dependent geometry, electronic structure, and optical properties of PdSSe using first-principles calculations. The lattice shrinkage effect present in the 2D structure is suppressed with increasing number of layers. Attributed to the strong interlayer coupling interactions, the band gap decreases from 2.30 to 0.83 eV with increased thickness. Particularly, the dispersion of the band edges on the high symmetry path changes considerably from the monolayer to bilayer PdSSe, resulting in shifts of the conduction band minimum and valence band maximum. The multilayer PdSSe shows band convergence feature with multi-valley for the conduction band, which are maintained with reduced effective mass. Furthermore, the increasing number of layers drives a wider absorption range in the visible light region, and the light absorption capability increases from ∼10% to ∼30%. Meanwhile, the band edge positions of the multilayer PdSSe are more appropriate for photocatalytic water splitting. Our theoretical study reveals the enhanced valley convergence, conductivity and optical absorption performance of the few-layer PdSSe, which suggests its promising application in thermoelectric conversion, solar harvesting and photocatalysis.

3.
Phys Chem Chem Phys ; 25(9): 6857-6866, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36799367

ABSTRACT

Iridium oxides (iridates) provide a good platform to study the delicate interplay between spin-orbit coupling (SOC) interactions, electron correlation effects, Hund's coupling and lattice degrees of freedom. An overwhelming number of investigations primarily focus on tetravalent (Ir4+, 5d5) and pentavalent (Ir5+, 5d4) iridates, and far less attention has been paid to iridates with other valence states. Here, we pay our attention to a less-explored trivalent (Ir3+, 5d6) iridate, K0.75Na0.25IrO2, crystallizing in a triangular lattice with edge-sharing IrO6 octahedra and alkali metal ion intercalated [IrO2]- layers, offering a good platform to explore the interplay between different degrees of freedom. We theoretically determine the preferred occupied positions of the alkali metal ions from energetic viewpoints and reproduce the experimentally observed semiconducting behavior and nonmagnetic (NM) properties of K0.75Na0.25IrO2. The SOC interactions play a critical role in the band dispersion, resulting in NM Jeff = 0 states. More intriguingly, our electronic structure not only uncovers the presence of intrinsic in-gap states and nearly free electron character for the conduction band minimum, but also explains the abnormally low activation energy in K0.75Na0.25IrO2. Particularly, the band edge can be effectively modulated by mechanical strain, and the in-gap states feature enhanced band-convergence characteristics by 6% compressive strain, which will greatly enhance the electrical conductivity of K0.75Na0.25IrO2. The present work sheds new light on the unconventional electronic structures of trivalent iridates, indicating their promising application as a nanoelectronic and thermoelectric material, which will attract extensive interest and stimulate experimental works to further understand the unprecedented electronic structures and exploit potential applications of the triangular trivalent iridate.

SELECTION OF CITATIONS
SEARCH DETAIL
...