Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 129: 155587, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38608598

ABSTRACT

BACKGROUND: Osteoporosis is a prevalent metabolic bone disease in older adults. Peroxisome proliferator-activated receptor ß (PPARß), the most abundant PPAR isotype expressed in bone tissues, plays a critical role in regulating the energy metabolism of osteoblasts. However, the botanical compounds targeting PPARß for the treatment of osteoporosis remain largely unexplored. PURPOSE: To discover a potent PPARß agonist from botanical compounds, as well as to investigate the anti-osteoporosis effects and to elucidate the underlying mechanisms of the newly identified PPARß agonist. METHODS: The PPARß agonist effects of botanical compounds were screened by an in vitro luciferase reporter gene assay. The PPARß agonist effects of pectolinarigenin (PEC) in bone marrow mesenchymal stromal cells (BMSCs) were validated by Western blotting. RNA-seq transcriptome analyses were conducted to reveal the underlying osteoporosis mechanisms of PEC in BMSCs. The PPARß antagonist (GSK0660) and Wnt signaling inhibitor (XAV969) were used to explore the role of the PPARß and Wnt signaling cascade in the anti-osteoporosis effects of PEC. PEC or the PEG-PLGA nanoparticles of PEC (PEC-NP) were intraperitoneally administrated in both wild-type mice and ovariectomy-induced osteoporosis mice to examine its anti-osteoporotic effects in vivo. RESULTS: PEC, a newly identified naturally occurring PPARß agonist, significantly promotes osteogenic differentiation and up-regulates the osteogenic differentiation-related genes (Runx2, Osterix, and Bmp2) in BMSCs. RNA sequencing and functional gene enrichment analysis suggested that PEC could activate osteogenic-related signaling pathways, including Wnt and PPAR signaling pathways. Further investigations suggested that PEC could enhance Wnt/ß-catenin signaling in a PPARß-dependent manner in BMSCs. Animal tests showed that PEC-NP promoted bone mass and density, increased the bone cell matrix protein, and accelerated bone formation in wild-type mice, while PEC-NP also played a preventive role in ovariectomy-induced osteoporosis mice via maintaining the expression level of bone cell matrix protein, balancing the rate of bone formation, and slowing down bone loss. Additionally, PEC-NP did not cause any organ injury and body weight loss after long-term use (11 weeks). CONCLUSION: PEC significantly promotes bone formation and reduces bone loss in both BMSCs and ovariectomy-induced osteoporosis mice via enhancing the Wnt signaling cascade in a PPARß-dependent manner, providing a new alternative therapy for preventing estrogen deficiency-induced osteoporotic diseases.


Subject(s)
Mesenchymal Stem Cells , Mice, Inbred C57BL , Osteoporosis , PPAR-beta , Wnt Signaling Pathway , Animals , Wnt Signaling Pathway/drug effects , Osteoporosis/drug therapy , PPAR-beta/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Female , Mice , Osteogenesis/drug effects , Ovariectomy , Saponins/pharmacology , Bone Morphogenetic Protein 2/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Chromones , Sulfones , Thiophenes
2.
Int J Oral Sci ; 16(1): 15, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38369512

ABSTRACT

Mammalian teeth, developing inseparable from epithelial-mesenchymal interaction, come in many shapes and the key factors governing tooth morphology deserve to be answered. By merging single-cell RNA sequencing analysis with lineage tracing models, we have unearthed a captivating correlation between the contrasting morphology of mouse molars and the specific presence of PRX1+ cells within M1. These PRX1+ cells assume a profound responsibility in shaping tooth morphology through a remarkable divergence in dental mesenchymal cell proliferation. Deeper into the mechanisms, we have discovered that Wnt5a, bestowed by mesenchymal PRX1+ cells, stimulates mesenchymal cell proliferation while orchestrating molar morphogenesis through WNT signaling pathway. The loss of Wnt5a exhibits a defect phenotype similar to that of siPrx1. Exogenous addition of WNT5A can successfully reverse the inhibited cell proliferation and consequent deviant appearance exhibited in Prx1-deficient tooth germs. These findings bestow compelling evidence of PRX1-positive mesenchymal cells to be potential target in regulating tooth morphology.


Subject(s)
Mesenchymal Stem Cells , Molar , Animals , Mice , Molar/growth & development , Morphogenesis , Tooth Germ/growth & development
3.
Int J Oral Sci ; 15(1): 5, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36604408

ABSTRACT

Tooth number abnormality is one of the most common dental developmental diseases, which includes both tooth agenesis and supernumerary teeth. Tooth development is regulated by numerous developmental signals, such as the well-known Wnt, BMP, FGF, Shh and Eda pathways, which mediate the ongoing complex interactions between epithelium and mesenchyme. Abnormal expression of these crutial signalling during this process may eventually lead to the development of anomalies in tooth number; however, the underlying mechanisms remain elusive. In this review, we summarized the major process of tooth development, the latest progress of mechanism studies and newly reported clinical investigations of tooth number abnormality. In addition, potential treatment approaches for tooth number abnormality based on developmental biology are also discussed. This review not only provides a reference for the diagnosis and treatment of tooth number abnormality in clinical practice but also facilitates the translation of basic research to the clinical application.


Subject(s)
Tooth , Gene Expression Regulation, Developmental , Odontogenesis , Signal Transduction , Tooth/metabolism , Humans
4.
Int J Oral Sci ; 14(1): 5, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35078971

ABSTRACT

Neural crest-derived mesenchymal stem cells (MSCs) are known to play an essential function during tooth and skeletal development. PRX1+ cells constitute an important MSC subtype that is implicated in osteogenesis. However, their potential function in tooth development and regeneration remains elusive. In the present study, we first assessed the cell fate of PRX1+ cells during molar development and periodontal ligament (PDL) formation in mice. Furthermore, single-cell RNA sequencing analysis was performed to study the distribution of PRX1+ cells in PDL cells. The behavior of PRX1+ cells during PDL reconstruction was investigated using an allogeneic transplanted tooth model. Although PRX1+ cells are spatial specific and can differentiate into almost all types of mesenchymal cells in first molars, their distribution in third molars is highly limited. The PDL formation is associated with a high number of PRX1+ cells; during transplanted teeth PDL reconstruction, PRX1+ cells from the recipient alveolar bone participate in angiogenesis as pericytes. Overall, PRX1+ cells are a key subtype of dental MSCs involved in the formation of mouse molar and PDL and participate in angiogenesis as pericytes during PDL reconstruction after tooth transplantation.


Subject(s)
Mesenchymal Stem Cells , Periodontal Ligament , Animals , Cell Differentiation , Mice , Molar , Osteogenesis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...