Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 907: 167849, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-37844648

ABSTRACT

The 2011 nuclear accident at Japan's Fukushima Daiichi Nuclear Power Plant (FDNPP) prompted inquiries about the long-term transfer of Cesium-137 (137Cs) from soil to agricultural plants. In this context, numerical modeling is particularly useful for the long-term evaluation of the consequences of agroecosystem contamination. Agricultural practices, such as tillage and cover cropping, play key roles in 137Cs recycling in agroecosystems. In this study, we used 10-year monitoring data to develop a dynamic model to predict 137Cs redistribution (via uptake, litterfall, translocation, and percolation) under different tillage (no-tillage, NT; rotary cultivation, RC; moldboard plow, MP) and cover crop (rye; hairy vetch; fallow weed) treatments. The verification exercise and assessment results indicated the model's reliability, as the temporal dynamics of predicted values agreed with observed values. Tillage significantly influenced the 137Cs distribution in soil, thereby decreasing plant uptake of 137Cs, whereas cover crop exerted a minimal effect on 137Cs cycling. Furthermore, while the 137Cs concentrations in soybean grain under RC and NT treatments were comparable 62 years after the FDNPP accident, the concentration under MP treatment remained consistently the lowest. Despite natural decay being the main cause of the decreased global 137Cs level in the agroecosystem, with minimal losses from percolation to deeper soil layers and soybean harvesting, adopting an appropriate tillage practice was shown to promote a long-term reduction of 137Cs concentration in crops. Finally, to improve the model's accuracy, further research should consider incorporating the effects of soil properties and extreme weather events on 137Cs flow into the model, as these factors are essential for realizing improved agroecosystem predictions.


Subject(s)
Agriculture , Fukushima Nuclear Accident , Farms , Reproducibility of Results , Agriculture/methods , Soil , Glycine max
2.
Sci Total Environ ; 831: 154897, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35367255

ABSTRACT

This study reports the translocation of cesium-137 (137Cs) into deep soil layers, and the 137Cs transfer from soil to soybean in farmland under three tillage (no tillage, NT; rotary cultivation, RC; moldboard plow; MP) treatments and an undisturbed grassland (GL) at eight years after the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident on 11 March 2011 in Japan. Tillage influences the 137Cs distribution in the 0-30 cm of soil; the distribution of 137Cs in the soil was uniform under RC and MP treatments, while in the grassland, most 137Cs was concentrated on the soil surface (0-2.5 cm). The center of vertical 137Cs radioactivity concentration (the thickness of the soil from surface which containing half of the 137Cs inventory) in GL was 5.5 cm, which was shallower than that in farmland (9.5 cm in NT, 13.6 cm in RC and 15.2 cm in MP). Hence, the total translocation distance of 137Cs 8 years after FDNPP accident showed the following trend: GL (2.4 cm) < NT (7.0 cm) < RC (10.0 cm) < MP (12.3 cm). Meanwhile, a significant positive correlation was observed between 137Cs radioactivity concentration and organic carbon and nitrogen content in the soil. However, the 137Cs radioactivity concentration in soybean grains was negatively correlated with the center of vertical 137Cs radioactivity concentration but positively correlated with the ratio of exchangeable 137Cs (ExCs) and K content in the soil. The ExCs/K and 137Cs distributions in the soil were combined into a statistical model to predict the 137Cs radioactivity concentration in soybean grain. The results revealed the magnitude of the impact of 137Cs distribution on the 137Cs transfer from soil to crop. The addition of the 137Cs distribution dramatically improved the accuracy of the prediction model of 137Cs radioactivity concentration in soybean.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Soil Pollutants, Radioactive , Cesium Radioisotopes/analysis , Japan , Soil , Soil Pollutants, Radioactive/analysis , Transfer Factor
3.
Sci Total Environ ; 697: 134060, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31487588

ABSTRACT

The accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in Japan in 2011 released a large amount of radionuclides, primarily radiocesium-137 (137Cs; half-life: 30 years), resulting in long-term contamination of soil and consequently crops. Tillage is a common agricultural management practice that alters the vertical distribution of nutrients in the soil. However, the effect of tillage on 137Cs contamination in soil and crops over time remains unclear. In this study, we investigated the temporal changes in the vertical distribution of 137Cs in the soil, concentration of 137Cs in soybean and cover crops, and the transfer factor (TF) of 137Cs from the soil to crops under three tillage systems (rotary cultivation [RC], moldboard plow [MP], and no tillage [NT]; main factors) using three cover crops (hairy vetch, winter rye, and fallow weeds; side factors). The amount of 137Cs in the soil decreased exponentially with soil depth under the NT and RC treatments. By contrast, 137Cs showed uniform distribution at each soil depth tested under the MP treatment since 2012. The exchangeable 137Cs demonstrated a similar tendency as 137Cs. The 137Cs concentration in soybean (including grain and residue) and cover crops decreased exponentially with time. Consistently higher 137Cs concentration was observed in soybean grains under the NT treatment, suggesting that tillage continuously reduced the concentration of 137Cs in soybean over 7 years since the FDNPP accident. The TF of 137Cs from soil to soybean and cover crops decreased continuously over time; however, 137Cs concentration of soybean grain showed a positive linear correlation with its annual variation rate. Additionally, TF showed a positive logarithmic correlation with 137Cs relaxation depth in the soil. These results enhance our understanding of the long-term behavior and radioecology of 137Cs in agroecosystems in Japan since the radionuclide accident.


Subject(s)
Agriculture , Cesium Radioisotopes/analysis , Fukushima Nuclear Accident , Radiation Monitoring , Soil Pollutants, Radioactive/analysis , Crops, Agricultural , Japan
SELECTION OF CITATIONS
SEARCH DETAIL
...