Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
IEEE Trans Med Imaging ; PP2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635381

ABSTRACT

Aneurysmal subarachnoid hemorrhage is a serious medical emergency of brain that has high mortality and poor prognosis. Treatment effect estimation is of high clinical significance to support the treatment decision-making for aneurysmal subarachnoid hemorrhage. However, most existing studies on treatment decision support of this disease are unable to simultaneously compare the potential outcomes of different treatments for a patient. Furthermore, these studies fail to harmoniously integrate the imaging data with non-imaging clinical data, both of which are significant in clinical scenarios. In this paper, the key challenges we address are: how to effectively estimate the treatment effect for aneurysmal subarachnoid hemorrhage; and how to utilize multi-modality data to perform this estimation. Specifically, we first propose a novel scheme that uses multi-modality confounders distillation architecture to predict the treatment outcome and treatment assignment simultaneously. Notably, with these distilled confounder features, we design an imaging and non-imaging interaction representation learning strategy to use the complementary information extracted from different modalities to balance the feature distribution of different treatment groups. We have conducted extensive experiments using a clinical dataset of 656 subarachnoid hemorrhage cases, which was collected from the Hospital Authority of Hong Kong. Our method shows consistent improvements on the evaluation metrics of treatment effect estimation, achieving state-of-the-art results over strong competitors. Code is released at https://github.com/med-air/TOP-aSAH.

3.
Int J Biochem Cell Biol ; 166: 106494, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37956954

ABSTRACT

Microparticles (MPs) are a heterogeneous subpopulation of extracellular vesicles that originate from the plasma membranes of cells. There is increasing evidence that tumor-derived MPs (T-MPs) play a significant role in tumor progression and immune response in cancer. In our study, we found an increased secretion of MPs in osteosarcoma tissues obtained from metastatic patients. These T-MPs promoted polarization of M2-like macrophages and stimulated the migration and chemoresistance of osteosarcoma cells. Mechanistically, T-MPs promoted macrophage polarization to an M2-like phenotype through TBK1-STAT6 signaling. Consequently, these M2-like macrophages mediated osteosarcoma cell migration via CCL18/STAT3 signaling. Blockade of STAT3 signaling pathway improved the outcome of chemotherapy in LM8-bearing osteosarcoma mice model. Thus, our study reveals how tumor cells regulate macrophage polarization by releasing MPs and provides new insights into clinical osteosarcoma therapy.


Subject(s)
Bone Neoplasms , Osteosarcoma , Animals , Mice , Humans , Macrophages/metabolism , Osteosarcoma/pathology , Signal Transduction , Phenotype , Bone Neoplasms/pathology , Cell Line, Tumor
4.
Ann Hematol ; 102(11): 3153-3165, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37684379

ABSTRACT

Diffuse Large B Cell Lymphoma (DLBCL) is the most common form of blood cancer. Among the subtypes, the activated B-cell (ABC) subtype is typically more aggressive and associated with worse outcomes. However, the underlying mechanisms are not fully understood. In this study, we performed microarray analysis to identify potential ABC-DLBCL-associated genes. We employed Kaplan-Meier methods and cox univariate analysis to explore the prognostic value of the identified candidate gene Coiled-coil domain containing 50 (CCDC50). Additionally, we used DLBCL cell lines and mouse models to explore the functions and mechanisms of CCDC50. Finally, we isolated CCDC50-bearing exosomes from clinical patients to study the correlation between these exosomes and disease severity. Our results demonstrated that CCDC50 not only showed significantly positive correlations with ABC subtype, tumor stage and number of extranodal sites, but also suggested poor outcomes in DLBCL patients. We further found that CCDC50 promoted ABC-DLBCL proliferation in vitro and in vivo. Mechanistically, CCDC50 inhibited ubiquitination-mediated c-Myc degradation by stimulating the PI3K/AKT/GSK-3ß pathway. Moreover, CCDC50 expression was positively correlated with c-Myc at protein levels in DLBCL patients. Additionally, in two clinical cohorts, the plasma CCDC50-positive exosomes differentiated DLBCL subtypes robustly (AUC > 0.80) and predicted disease severity effectively (p < 0.05). Our findings suggest that CCDC50 likely drives disease progression in ABC-DLBCL patients, and the CCDC50-bearing exosome holds great potential as a non-invasive biomarker for subtype diagnosis and prognosis prediction of DLBCL patients.

5.
Biomacromolecules ; 24(6): 2804-2815, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37223955

ABSTRACT

SPLUNC1 (short palate lung and nasal epithelial clone 1) is a multifunctional host defense protein found in human respiratory tract with antimicrobial properties. In this work, we compare the biological activities of four SPLUNC1 antimicrobial peptide (AMP) derivatives using paired clinical isolates of the Gram-negative (G(-)) bacteria Klebsiella pneumoniae, obtained from 11 patients with/without colistin resistance. Secondary structural studies were carried out to study interactions between the AMPs and lipid model membranes (LMMs) utilizing circular dichroism (CD). Two peptides were further characterized using X-ray diffuse scattering (XDS) and neutron reflectivity (NR). A4-153 displayed superior antibacterial activity in both G(-) planktonic cultures and biofilms. NR and XDS revealed that A4-153 (highest activity) is located primarily in membrane headgroups, while A4-198 (lowest activity) is located in hydrophobic interior. CD revealed that A4-153 is helical, while A4-198 has little helical character, demonstrating that helicity and efficacy are correlated in these SPLUNC1 AMPs.


Subject(s)
Bacteria , Lung , Humans , Biofilms , Gram-Negative Bacteria , Lipids , Microbial Sensitivity Tests , Peptides
6.
Bioresour Technol ; 361: 127737, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35931283

ABSTRACT

Harmful algal blooms (HABs) are growing threats that cause tens of billion dollars economic loss annually. Aiming at efficient disposal of HABs, a cheap and eco-friendly cationic straw was developed by etherification of wheat straw, which replaced hydroxyl groups on cellulose by quaternary ammonium groups. It endowed the cationic straw with high positive charge and achieved 93.92% of harvesting efficiency by enhancing HABs cells aggregation via charge neutralization. Different from inorganic salts-based flocculants, HABs harvesting by the cationic straw is a spontaneous and exothermic process with negative ΔG° and ΔH° under all adsorption conditions. Thermodynamics and kinetics analysis elucidated that HABs adsorption process by cationic straw were mainly driven by physical forces. Together, cationic straw preparation and HABs harvesting processes were comprehensively optimized with orthogonal experiments. The work may inspire cost-effective HABs disposal and fill knowledge gaps of process nature for HABs harvesting.


Subject(s)
Harmful Algal Bloom , Adsorption , Flocculation , Kinetics , Thermodynamics
7.
Medicine (Baltimore) ; 101(24): e29312, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35713434

ABSTRACT

ABSTRACT: Diffuse Large B Cell Lymphoma (DLBCL), the most common form of blood cancer. The genetic and clinical heterogeneity of DLBCL poses a major barrier to diagnosis and treatment. Hence, we aim to identify potential biomarkers for DLBCL.Differentially expressed genes were screened between DLBCL and the corresponding normal tissues. Kyoto Encyclopedia of Genes and Genomes and Gene oncology analyses were performed to obtain an insight into these differentially expressed genes. PPI network was constructed to identify hub genes. survival analysis was applied to evaluate the prognostic value of those hub genes. DNA methylation analysis was implemented to explore the epigenetic dysregulation of genes in DLBCL.In this study, Kinesin family member 23 (KIF23) showed higher expression in DLBCL and was identified as a risk factor in DLBCL. The immunohistochemistry experiment further confirmed this finding. Subsequently, the univariate and multivariate analysis indicated that KIF23 might be an independent adverse factor in DLBCL. Upregulation of KIF23 might be a risk factor for the overall survival of patients who received an R-CHOP regimen, in late-stage, whatever with or without extranodal sites. Higher expression of KIF23 also significantly reduced 3, 5, 10-year overall survival. Furthermore, functional enrichment analyses (Kyoto Encyclopedia of Genes and Genomes, Gene oncology, and Gene Set Enrichment Analysis) showed that KIF23 was mainly involved in cell cycle, nuclear division, PI3K/AKT/mTOR, TGF-beta, and Wnt/beta-catenin pathway in DLBCL. Finally, results of DNA methylation analysis indicated that hypomethylation in KIF23's promoter region might be the result of its higher expression in DLBCL.The findings of this study suggested that KIF23 is a potential biomarker for the diagnosis and prognosis of DLBCL. However, further studies were needed to validate these findings.


Subject(s)
Computational Biology , Lymphoma, Large B-Cell, Diffuse , Biomarkers , Humans , Immunohistochemistry , Lymphoma, Large B-Cell, Diffuse/pathology , Microtubule-Associated Proteins , Phosphatidylinositol 3-Kinases , Prognosis
8.
Front Psychol ; 13: 794892, 2022.
Article in English | MEDLINE | ID: mdl-35211064

ABSTRACT

Group interaction is an essential way of social interaction and plays an important role in our social development. It has been found that when individuals participate in group interactions, the group identity of the interaction partner affects the mental processing and behavioral decision-making of subjects. However, little is known about how deaf college students, who are labeled distinctly different from normal hearing college students, will react when facing proposers from different groups in the ultimatum game (UG) and its time course. In this study, we recruited 29 deaf college students who played the UG in which they received extremely unfair, moderately unfair, or fair offers from either outgroup members (normal hearing college students) or ingroup members (deaf college students), while their brain potentials were recorded. The behavioral results showed that group membership did not impact the acceptance rate of deaf college students. But, event-related potential (ERP) analysis demonstrated an enhanced feedback-related negativity (FRN) elicited by ingroup members compared to outgroup members. Importantly, we found that under fairness conditions, deaf college students induced more positive P2 and P3 facing ingroup members compared to outgroup members. Our results demonstrated that group membership may modulate the performance of deaf college students in the UG and the existence of ingroup bias among deaf college students. This provides some evidence for the fairness characteristics of special populations, so that to improve the educational integration of colleges and universities.

9.
Front Oncol ; 11: 677763, 2021.
Article in English | MEDLINE | ID: mdl-34168996

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is the most frequent and commonly diagnosed subtype of NHL, which is characterized by high heterogeneity and malignancy, and most DLBCL patients are at advanced stages. The serine/threonine kinase NEK2 (NIMA-related kinase 2), a member of NIMA-related kinase (NEK) family that regulates cell cycle, is upregulated in a variety of malignancies, including diffuse large B-cell lymphoma. However, the role and underlying mechanisms of NEK2 in DLBCL have seldom been discussed. In this study, we identified that NEK2 is upregulated in DLBCL compared to normal lymphoid tissues, and overexpression of NEK2 predicted a worse prognosis of DLBCL patients. Gene set enrichment analysis indicates that NEK2 might participate in regulating glycolysis. Knockdown of NEK2 inhibited growth and glycolysis of DLBCL cells. The interaction between NEK2 and PKM2 was discovered by tandem affinity purification and then was confirmed by immunofluorescence staining, coimmunoprecipitation, and immunoprecipitation. NEK2 bounds to PKM2 and regulates PKM2 abundance via phosphorylation, which increases PKM2 stability. The xenograft tumor model checks the influence of NEK2 on tumor growth in vivo. Thus, NEK2 could be the novel biomarker and target of DLBCL, which remarkably ameliorates the diagnosis and treatment of DLBCL.

10.
PeerJ ; 8: e10269, 2020.
Article in English | MEDLINE | ID: mdl-33240622

ABSTRACT

BACKGROUND: Host response diffuse large B-cell lymphoma (HR DLBCL) shares features of histologically defined T-cell/histiocyte-rich B-cell lymphoma, including fewer genetic abnormalities, frequent splenic and bone marrow involvement, and younger age at presentation. HR DLBCL is inherently less responsive to the standard treatment for DLBCL. Moreover, the mechanism of infiltration of HR DLBCL with preexisting abundant T-cells and dendritic cells is unknown, and their associated underlying immune responses incompletely defined. Here, hub genes and pathogenesis associated with HR DLBCL were explored to reveal molecular mechanisms and treatment targets. METHODS: Differentially expressed genes were identified in three datasets (GSE25638, GSE44337, GSE56315). The expression profile of the genes in the GSE53786 dataset was used to constructed a co-expression network. Protein-protein interactions analysis in the modules of interest identified candidate hub genes. Then screening of real hub genes was carried out by survival analysis within the GSE53786 and GSE10846 datasets. Expression of hub genes was validated in the Gene expression profiling interactive analysis, Oncomine databases and human tissue specimens. Functional enrichment analysis and Gene set enrichment analysis were utilized to investigate the potential mechanisms. Tumor Immune Estimation Resource and The Cancer Genome Atlas were used to mine the association of the hub gene with tumor immunity, potential upstream regulators were predicted using bioinformatics tools. RESULTS: A total of 274 common differentially expressed genes were identified. Within the key module, we identified CXCL10 as a real hub gene. The validation of upregulated expression level of CXCL10 was consistent with our study. CXCL10 might have a regulatory effect on tumor immunity. The predicted miRNA (hsa-mir-6849-3p) and transcription factor (IRF9) might regulate gene expression in the hub module.

11.
Cell Commun Signal ; 16(1): 50, 2018 08 24.
Article in English | MEDLINE | ID: mdl-30143009

ABSTRACT

BACKGROUND: Wilms' tumor 1-associating protein (WTAP) is a nuclear protein, which is ubiquitously expressed in many tissues. Furthermore, in various types of malignancies WTAP is overexpressed and plays a role as an oncogene. The function of WTAP in diffuse large B-cell lymphoma (DLBCL), however, remains unclear. METHODS: Immunohistochemistry was applied to evaluate the levels of WTAP expression in DLBCL tissues and normal lymphoid tissues. Overexpression and knock-down of WTAP in DLBCL cell lines, verified on mRNA and protein level served to analyze cell proliferation and apoptosis in DLBCL cell lines by flow cytometry. Finally, co-immunoprecipitation (Co-IP), IP, and GST-pull down assessed the interaction of WTAP with Heat shock protein 90 (Hsp90) and B-cell lymphoma 6 (BCL6) as well as determined the extend of its ubiquitinylation. RESULTS: WTAP protein levels were consistently upregulated in DLBCL tissues. WTAP promoted DLBCL cell proliferation and improved the ability to confront apoptosis, while knockdown of WTAP in DLBCL cell lines allowed a significant higher apoptosis rate after treatment with Etoposide, an anti-tumor drug. The stable expression of WTAP was depended on Hsp90. In line, we demonstrated that WTAP could form a complex with BCL6 via Hsp90 in vivo and in vitro. CONCLUSION: WTAP is highly expressed in DLBCL, promoting growth and anti-apoptosis in DLBCL cell lines. WTAP is a client protein of Hsp90 and can appear in a complex with BCL6 and Hsp90 in DLBCL. Down-regulation of WTAP could improve the chemotherapeutic treatments in DLBCL.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Lymphoma, Large B-Cell, Diffuse/metabolism , Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-bcl-6/metabolism , Apoptosis , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Lymphoma, Large B-Cell, Diffuse/pathology , Protein Binding , Protein Stability , RNA Splicing Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...