Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 6: 22858, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26956096

ABSTRACT

Correlations between the level of p-doping exhibited in large area chemical vapour deposition (CVD) graphene field effect transistor structures (gFETs) and residual charges created by a variety of surface treatments to the silicon dioxide (SiO2) substrates prior to CVD graphene transfer are measured. Beginning with graphene on untreated thermal oxidised silicon, a minimum conductivity (σ(min)) occurring at gate voltage V(g) = 15 V (Dirac Point) is measured. It was found that more aggressive treatments (O2 plasma and UV Ozone treatments) further increase the gate voltage of the Dirac point up to 65 V, corresponding to a significant increase of the level of p-doping displayed in the graphene. An electrowetting model describing the measured relationship between the contact angle (θ) of a water droplet applied to the treated substrate/graphene surface and an effective gate voltage from a surface charge density is proposed to describe biasing of V(g) at σ(min) and was found to fit the measurements with multiplication of a correction factor, allowing effective non-destructive approximation of substrate added charge carrier density using contact angle measurements.

3.
Nanotechnology ; 23(28): 285706, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22728562

ABSTRACT

Here we report a non-contact method for microwave surface impedance measurements of reduced graphene oxide samples using a high Q dielectric resonator perturbation technique, with the aim of studying the water content of graphene oxide flakes. Measurements are made before, during and after heating and cooling cycles. We have modelled plane wave propagation of microwaves perpendicular to the surface of graphene on quartz substrates, capacitively coupled to a dielectric resonator. Analytical solutions are derived for both changes in resonant frequency and microwave loss for a range of water layer thicknesses. In this way we have measured the presence of adsorbed water layers in reduced graphene oxide films. The water can be removed by low temperature annealing on both single and multilayer samples. The results indicate that water is intercalated between the layers in a multilayer sample, rather than only being adsorbed on the outer surfaces, and it can be released by applying a mild heating.


Subject(s)
Graphite/chemistry , Oxides/chemistry , Water/chemistry , Electric Impedance , Heating , Microwaves , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...