Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
J Chem Inf Model ; 64(1): 128-137, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38127785

ABSTRACT

Autoxidation of drugs and drug-like molecules is a major concern in the development of safe and effective therapeutics. Because active pharmaceutical ingredients (APIs) that contain sulfur atoms can form sulfoxides under oxidative stress, predicting oxidative susceptibilities within an organic molecule can have a major impact in accelerating the compound's stability assessment. For investigation of a sulfur atom's oxidative stability, density functional theory (DFT) methods were applied to accurately predict S-O estimated bond dissociation enthalpies (BDEs) of sulfoxides. Our process employed B3LYP/6-31+G(d) for geometry optimization and frequency calculation, and we employed B3P86/6-311++G(2df,2p) to obtain electronic energies from single-point energy calculations. A total of 84 drug-like molecules containing 50 different sulfide scaffolds were used to develop a risk scale. Our results showed that when S-O BDE is less than 69 kcal/mol, the sulfur atom has low oxidative susceptibility. High oxidation risk occurs when the S-O BDE is greater than 75 kcal/mol. The risk scale was successful in predicting the relative propensities of sulfide oxidation among the small organic molecules and commercial drugs examined.


Subject(s)
Sulfides , Sulfur , Models, Molecular , Density Functional Theory , Sulfur/chemistry , Sulfoxides , Quantum Theory
2.
J Org Chem ; 88(15): 10881-10904, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37441763

ABSTRACT

The synthesis of di- and trisubstituted vinyl fluorides with high isomeric purity remains a challenge for organic synthesis. While many methods exist to access these compounds, the separation of the desired isomer from the minor isomer and/or starting materials often is difficult. Herein, we report a practical method to access di- and trisubstituted vinyl fluorides via a selective Horner-Wadsworth-Emmons olefination/hydrolysis, which provides crystalline 2-fluoroacrylic acids in high (>98%) E-isomeric purity. A subsequent silver-catalyzed stereoretentive decarboxylation provides the title substances with high isomeric purity and without the need for tedious chromatography to remove the minor isomer. The process was amenable to a variety of aldehydes and ketones and provided a diverse array of di- and trisubstituted vinyl fluorides. The sequence was applied to the synthesis of antibacterial and anti-inflammatory compounds.

3.
Pharm Res ; 40(7): 1873-1883, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37386273

ABSTRACT

INTRODUCTION: The formation of N-oxide degradants is a major concern in development of new drugs due to potential effects on a compound's pharmacological activity. Such effects include but are not limited to solubility, stability, toxicity, and efficacy. In addition, these chemical transformations can impact physicochemical properties that affect drug manufacturability. Hence identification and control of N-oxide transformations is of critical importance in the development of new therapeutics. OBJECTIVE: This study describes the development of an in-silico approach to identify N-oxide formation in APIs with respect to autoxidation. METHODS: Average Local Ionization Energy (ALIE) calculations were carried out using molecular modeling techniques and application of Density Functional Theory (DFT) at the B3LYP/6-31G(d,p) level of theory. A total of 257 nitrogen atoms and 15 different oxidizable nitrogen types were used in developing this method. RESULTS: The results show that ALIE could be reliably used to predict the most susceptible nitrogen for N-oxide formation. A risk scale was developed that rapidly categorizes nitrogen's oxidative vulnerabilities as small, medium, or high. CONCLUSIONS: The developed process presents a powerful tool to identify structural susceptibilities for N-oxidation as well as enabling rapid structure elucidation in resolving potential experimental ambiguities.


Subject(s)
Nitrogen , Oxides , Density Functional Theory , Models, Molecular , Oxidation-Reduction
4.
Org Biomol Chem ; 18(35): 6927-6934, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32936188

ABSTRACT

A methodology for deconvolution of fast exchange equilibrium states in NMR spectroscopy (DFEQNMR) was developed based on DFT-GIAO NMR chemical shift prediction and a probability theory algorithm. Proof-of-concept studies were performed to estimate the protonation state of N-containing organic molecules involving fast proton exchange equilibrium and evaluate the solution tautomerism of a purine derivative. DFT-GIAO calculations were optimized to achieve good accuracy in 13C, 1H and 15N chemical shift prediction for protonated species. The probability theory algorithm enabled the determination of solution species ratios and yielded 95% confidence regions by comparing experimental and simulated chemical shift data sets. The calculation showed good accuracy for model partial salts with various functionalities and application in structure elucidation of complex natural product partial salts was also demonstrated. This method showed promising potential in acquisition of important insight into fast exchange equilibrium systems with only one experimental NMR chemical shift data set.

5.
J Med Chem ; 62(22): 10272-10293, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31689114

ABSTRACT

The epidermal growth factor receptor (EGFR), when carrying an activating mutation like del19 or L858R, acts as an oncogenic driver in a subset of lung tumors. While tumor responses to tyrosine kinase inhibitors (TKIs) are accompanied by marked tumor shrinkage, the response is usually not durable. Most patients relapse within two years of therapy often due to acquisition of an additional mutation in EGFR kinase domain that confers resistance to TKIs. Crucially, oncogenic EGFR harboring both resistance mutations, T790M and C797S, can no longer be inhibited by currently approved EGFR TKIs. Here, we describe the discovery of BI-4020, which is a noncovalent, wild-type EGFR sparing, macrocyclic TKI. BI-4020 potently inhibits the above-described EGFR variants and induces tumor regressions in a cross-resistant EGFRdel19 T790M C797S xenograft model. Key was the identification of a highly selective but moderately potent benzimidazole followed by complete rigidification of the molecule through macrocyclization.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Benzimidazoles/chemistry , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Crystallography, X-Ray , Cyclization , Entropy , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , ErbB Receptors/genetics , Female , Hepatocytes , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Transgenic , Mutation , Protein Conformation , Protein Kinase Inhibitors/pharmacokinetics , Structure-Activity Relationship , Xenograft Model Antitumor Assays
6.
J Org Chem ; 83(9): 5035-5043, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29625009

ABSTRACT

NMR chemical shift prediction at the B3LYP/cc-pVDZ level of theory was used to develop a highly accurate probability theory algorithm for the determination of the stereochemistry of diastereomers as well as the regiochemistry. DFT-GIAO calculations were performed for each conformer using geometry optimization and a CPCM solvent model. Boltzmann averaged shielding constants were converted to chemical shifts for 1H and 13C, using the generalized linear scaling terms determined in four different solvents for 1H and 13C and extended to 15N in DMSO. The probability theory algorithm, D iCE, was based on the DP4 method and developed for 1H, 13C, and 15N NMR using individual and combined probability data. The chemical shift calculation errors were fitted to a Student's t-distribution for 1H and 13C and a normal distribution for 15N. The application yielded a high accuracy for structural assignment with a low computational cost.

7.
Angew Chem Int Ed Engl ; 56(24): 6999-7002, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28493607

ABSTRACT

ß-Ketonitriles bearing a quaternary carbon at the 2-position were prepared through Rh-catalyzed addition of aryl boronic acids to 2,2-disubstituted malononitriles. In contrast to the previously described transnitrilative cyanation of aryl boronic acids with dialkylmalononitriles, the present reaction avoids retro-Thorpe collapse of the intermediate addition product through the use of a milder base. The reaction was amenable to a variety of aryl boronic acids and disubstituted malononitriles, providing a diverse array of ß-ketonitriles. The products could be further derivatized to valuable chiral α,α-disubstituted-ß-aminonitriles through addition reactions to the corresponding N-tert-butanesulfinyl imines.

8.
J Org Chem ; 82(10): 5135-5145, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28398046

ABSTRACT

An accurate and efficient procedure was developed for performing 13C NMR chemical shift calculations employing density functional theory with the gauge invariant atomic orbitals (DFT-GIAO). Benchmarking analysis was carried out, incorporating several density functionals and basis sets commonly used for prediction of 13C NMR chemical shifts, from which the B3LYP/cc-pVDZ level of theory was found to provide accurate results at low computational cost. Statistical analyses from a large data set of 13C NMR chemical shifts in DMSO are presented with TMS as the calculated reference and with empirical scaling parameters obtained from a linear regression analysis. Systematic errors were observed locally for key functional groups and carbon types, and correction factors were determined. The application of this process and associated correction factors enabled assignment of the correct structures of therapeutically relevant compounds in cases where experimental data yielded inconclusive or ambiguous results. Overall, the use of B3LYP/cc-pVDZ with linear scaling and correction terms affords a powerful and efficient tool for structure elucidation.

9.
Org Biomol Chem ; 15(4): 928-936, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-28050610

ABSTRACT

The calculation of 15N NMR chemical shifts has been systematically investigated using density functional theory-gauge including/invariant atomic orbitals (DFT-GIAO) approximation at the B3LYP/cc-pVDZ level of theory. General linear regression terms for 15N chemical shift predictions were calculated for nitromethane and liquid ammonia references in DMSO. Both aliphatic and aromatic nitrogens were studied using a diverse set of molecular scaffolds. Statistical error analysis between experiment and prediction revealed that, with the exception of primary amines, 95% of linear scaled N-15 chemical shifts are within a ±9.56 ppm range. Comparison of the 15N calculated isotropic chemical shifts with the experimentally determined chemical shifts provided accurate assignment of the correct structure in cases where experimental data was ambiguous or inconclusive. Application of 15N prediction proved to be highly effective in identifying the correct regio-isomer, oxidation state, protonation state and preferred tautomer in solution.


Subject(s)
Oxides/chemistry , Quantum Theory , Magnetic Resonance Spectroscopy/standards , Nitrogen Isotopes , Protons , Reference Standards , Stereoisomerism
10.
Org Lett ; 18(23): 6192-6195, 2016 12 02.
Article in English | MEDLINE | ID: mdl-27934338

ABSTRACT

The copper-catalyzed asymmetric propargylation of cyclic aldimines is reported. The influence of the imine trimer to inhibit the reaction was identified, and equilibrium constants between the monomer and trimer were determined for general classes of imines. Asymmetric propargylation of a diverse series of N-alkyl and N-aryl aldimines was achieved with good to high asymmetric induction. The utility was demonstrated by a titanium catalyzed hydroamination and reduction to generate the chiral indolizidines (-)-crispine A and (-)-harmicine.

11.
J Labelled Comp Radiopharm ; 59(14): 648-656, 2016 12.
Article in English | MEDLINE | ID: mdl-27146196

ABSTRACT

Dabigatran etexilate or pradaxa, a novel oral anticoagulant, is a reversible, competitive, direct thrombin inhibitor. It is used to prevent strokes in patients with atrial fibrillation and the formation of blood clots in the veins (deep venous thrombosis) in adults who have had an operation to replace a hip or a knee. Pradaxa is the only novel oral anticoagulant available with both proven superiority to warfarin and a specific reversal agent for use in rare emergency situations. The detailed description of the synthesis of carbon-13 and carbon-14 labeled dabigatran etexilate, and tritium labeled dabigatran is described. The synthesis of carbon-13 dabigatran etexilate was accomplished in eight steps and in 6% overall yield starting from aniline-13 C6 . Ethyl bromoacetate-1-14 C was the reagent of choice in the synthesis of carbon-14 labeled dabigatran etexilate in six steps and 17% overall yield. Tritium labeled dabigatran was prepared using either direct tritium incorporation under Crabtree's catalytic conditions or tritium-dehalogenation of a diiodo-precursor of dabigatran.


Subject(s)
Carbon Isotopes/chemistry , Carbon Radioisotopes/chemistry , Dabigatran/chemistry , Tritium/chemistry , Catalysis , Isotope Labeling
12.
J Pharm Sci ; 105(6): 1881-1890, 2016 06.
Article in English | MEDLINE | ID: mdl-27238486

ABSTRACT

A large-scale synthesis of the hepatitis C virus drug Faldaprevir revealed precipitation of an unknown insoluble solid from methanol solutions of the drug substance. The unknown impurity was determined to be a polymer of Faldaprevir based on analytical methods that included size exclusion chromatography in combination with electrospray ionization mass spectrometry, solution nuclear magnetic resonance (NMR), matrix-assisted laser desorption ionization-time of flight, ultracentrifugation, elemental analysis, and sodium quantitation by atom absorption spectroscopy. Structure elucidation of the polymeric backbone was achieved using solid-state NMR cross-polarization/magic angle spinning (CP/MAS), cross polarization-polarization inversion, and heteronuclear correlation (HETCOR) experiments. The polymerization was found to occur at the vinyl cyclopropane via a likely free radical initiation mechanism. Full proton and carbon chemical shift assignments of the polymer were obtained using solution NMR spectroscopy. The polymer structure was corroborated with chemical synthesis of the polymer and solution NMR analysis.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Oligopeptides/chemistry , Polymers/chemistry , Thiazoles/chemistry , Aminoisobutyric Acids , Leucine/analogs & derivatives , Molecular Structure , Oligopeptides/analysis , Polymers/analysis , Proline/analogs & derivatives , Quinolines , Spectrometry, Mass, Electrospray Ionization/methods , Thiazoles/analysis
13.
Org Lett ; 17(22): 5614-7, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26558319

ABSTRACT

A general, scalable, and highly diastereoselective aziridination of N-tert-butanesulfinyl ketimino esters is described. The methodology has been utilized to provide straightforward access to previously unobtainable, biologically relevant α-quaternary amino esters and derivatives starting from readily available precursors.


Subject(s)
Aza Compounds/chemistry , Aziridines/chemical synthesis , Aziridines/chemistry , Catalysis , Esters , Molecular Structure , Stereoisomerism
14.
Magn Reson Chem ; 53(10): 829-35, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26138046

ABSTRACT

The three-dimensional solution conformation of teicoplanin aglycone was determined using NMR spectroscopy. A combination of NOE and dihedral angle restraints in a DMSO solvation model was used to calculate an ensemble of structures having a root mean square deviation of 0.17 Å. The structures were generated using systematic searches of conformational space for optimal satisfaction of distance and dihedral angle restraints. Comparison of the NMR-derived structure of teicoplanin aglycone with the X-ray structure of a teicoplanin aglycone analog revealed a common backbone conformation with deviation of two aromatic side chain substituents. Experimentally determined backbone (13)C chemical shifts showed good agreement with those computed at the density functional level of theory, providing a cross validation of the backbone conformation. The flexible portion of the molecule was consistent with the region that changes conformation to accommodate protein binding. The results showed that a hydrogen-bonded DMSO molecule in combination with NMR-derived restraints together enabled calculation of structures that satisfied experimental data.


Subject(s)
Computer Simulation , Dimethyl Sulfoxide/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Teicoplanin/analogs & derivatives , Molecular Conformation , Solutions , Teicoplanin/chemistry
15.
Angew Chem Int Ed Engl ; 54(24): 7144-8, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-25939331

ABSTRACT

A practical and efficient synthesis of a complex chiral atropisomeric HIV integrase inhibitor has been accomplished. The combination of a copper-catalyzed acylation along with the implementation of the BI-DIME ligands for a ligand-controlled Suzuki cross-coupling and an unprecedented bis(trifluoromethane)sulfonamide-catalyzed tert-butylation renders the synthesis of this complex molecule robust, safe, and economical. Furthermore, the overall synthesis was conducted in an asymmetric and diastereoselective fashion with respect to the imbedded atropisomer.


Subject(s)
HIV Integrase Inhibitors/chemical synthesis , HIV Integrase/chemistry , HIV/enzymology , Acylation , Catalysis , Copper/chemistry , HIV Integrase/metabolism , HIV Integrase Inhibitors/chemistry , Humans , Ligands , Stereoisomerism , Sulfonamides/chemistry
16.
Angew Chem Int Ed Engl ; 53(52): 14428-32, 2014 Dec 22.
Article in English | MEDLINE | ID: mdl-25385009

ABSTRACT

Air-stable P-chiral dihydrobenzooxaphosphole oxazoline ligands were designed and synthesized. When they were used in the iridium-catalyzed asymmetric hydrogenation of unfunctionalized 1-aryl-3,4-dihydronaphthalenes under one atmosphere pressure of H2 , up to 99:1 e.r. was obtained. High enantioselectivities were also observed in the reduction of the exocyclic imine derivatives of 1-tetralones.


Subject(s)
Hydrogen/chemistry , Iridium/chemistry , Oxazoles/chemistry , Catalysis , Hydrogenation , Imines/chemistry , Models, Molecular , Stereoisomerism
17.
J Chromatogr A ; 1362: 119-28, 2014 10 03.
Article in English | MEDLINE | ID: mdl-25193169

ABSTRACT

Allenes are cumulenes with three contiguous carbons linked together through double bonds. 1,3-disubstituted allenes are not superimposable on their mirror image; as a consequence they are chiral. Chiral allenes are increasingly important in organic synthesis due to their interesting reactivity. Because of their applications in the field of asymmetric catalysis and in the pharmaceutical industry their optical purity is always a parameter which needs to be determined. In this article, we report the enantiomeric separation of hexa-3,4-diene-3-ylbenzene, an aromatic allene, on a cellulose carbamate (Chiralcel OD-3) stationary phase, using heptane as the mobile phase. Spectroscopic studies using infrared (IR) and vibrational circular dichroism revealed that, in the presence of heptane, the stationary phase undergoes a conformational change due to intermolecular H-bonding between the CO and NH of the neighboring polymer chains. Van't Hoff plots for the retention factor, k, showed that the retention of the two enantiomers is dominated by the enthalpy, while the plot for the selectivity, α, is entropy driven. This suggests that the enantioselectivity is a result of inclusion of the enantiomers in the cavities of the chrial stationary phase. VCD spectra, along with density functional theory calculation (DFT) of the interaction between each enantiomer and the chiral stationary phase, supported the chromatographic elution order findings.


Subject(s)
Alkadienes/isolation & purification , Cellulose/analogs & derivatives , Phenylcarbamates/chemistry , Alkadienes/chemistry , Cellulose/chemistry , Circular Dichroism , Stereoisomerism , Temperature
18.
Org Lett ; 16(16): 4142-5, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25084526

ABSTRACT

An efficient enantioselective synthesis of the chiral polycyclic cholesteryl ester transfer protein (CETP) inhibitor 1 has been developed. The synthesis was rendered practical for large scale via the development of a modified Hantzsch-type reaction to prepare the sterically hindered pyridine ring, enantioselective hydrogenation of hindered ketone 6 utilizing novel BIBOP-amino-pyridine derived Ru complex, efficient ICl promoted lactone formation, and a BF3 mediated hydrogenation process for diastereoselective lactol reduction. This efficient route was successfully scaled to produce multikilogram quantities of challenging CETP drug candidate 1.


Subject(s)
Cholesterol Ester Transfer Proteins/antagonists & inhibitors , Pyridines/chemical synthesis , Pyridines/pharmacology , Crystallography, X-Ray , Hydrogenation , Molecular Conformation , Molecular Structure , Pyridines/chemistry , Stereoisomerism
19.
Drug Metab Dispos ; 42(3): 384-93, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24346834

ABSTRACT

Faldaprevir is a hepatitis C virus protease inhibitor that effectively reduces viral load in patients. Since faldaprevir exhibits slow metabolism in vitro and low clearance in vivo, metabolism was expected to be a minor clearance pathway. The human [(14)C] absorption, distribution, metabolism, and excretion study revealed that two monohydroxylated metabolites (M2a and M2b) were the most abundant excretory metabolites in feces, constituting 41% of the total administered dose. To deconvolute the formation and disposition of M2a and M2b in humans and determine why the minor change in structure [the addition of 16 atomic mass units (amu)] produced chemical entities that were excreted and were not present in the circulation, multiple in vitro test systems were used. The results from these in vitro studies clarified the formation and clearance of M2a and M2b. Faldaprevir is metabolized primarily in the liver by CYP3A4/5 to form M2a and M2b, which are also substrates of efflux transporters (P-glycoprotein and breast cancer resistance protein). The role of transporters is considered important for M2a and M2b as they demonstrate low permeability. It is proposed that both metabolites are efficiently excreted via bile into feces and do not enter the systemic circulation to an appreciable extent. If these metabolites permeate to blood, they can be readily taken up into hepatocytes from the circulation by uptake transporters (likely organic anion transporting polypeptides). These results highlight the critical role of drug-metabolizing enzymes and multiple transporters in the process of the formation and clearance of faldaprevir metabolites. Faldaprevir metabolism also provides an interesting case study for metabolites that are exclusively excreted in feces but are of clinical relevance.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Antiviral Agents , Cytochrome P-450 Enzyme System/metabolism , Feces/enzymology , Oligopeptides , Thiazoles , Aminoisobutyric Acids , Antiviral Agents/blood , Antiviral Agents/metabolism , Caco-2 Cells , Cell Membrane Permeability , Drug Stability , Drug Storage , Feces/chemistry , Female , Hepatocytes/drug effects , Hepatocytes/enzymology , Hepatocytes/metabolism , Humans , In Vitro Techniques , Intestinal Absorption , Intestinal Mucosa/metabolism , Intestines/drug effects , Intestines/enzymology , Kinetics , Leucine/analogs & derivatives , Male , Metabolic Clearance Rate , Microsomes/drug effects , Microsomes/enzymology , Microsomes/metabolism , Oligopeptides/blood , Oligopeptides/metabolism , Proline/analogs & derivatives , Protein Binding , Quinolines , Thiazoles/blood , Thiazoles/metabolism
20.
PDA J Pharm Sci Technol ; 67(3): 267-87, 2013.
Article in English | MEDLINE | ID: mdl-23752753

ABSTRACT

The structural analysis (i.e., identification) of organic chemical entities leached into drug product formulations has traditionally been accomplished with techniques involving the combination of chromatography with mass spectrometry. These include gas chromatography/mass spectrometry (GC/MS) for volatile and semi-volatile compounds, and various forms of liquid chromatography/mass spectrometry (LC/MS or HPLC/MS) for semi-volatile and relatively non-volatile compounds. GC/MS and LC/MS techniques are complementary for structural analysis of leachables and potentially leachable organic compounds produced via laboratory extraction of pharmaceutical container closure/delivery system components and corresponding materials of construction. Both hyphenated analytical techniques possess the separating capability, compound specific detection attributes, and sensitivity required to effectively analyze complex mixtures of trace level organic compounds. However, hyphenated techniques based on mass spectrometry are limited by the inability to determine complete bond connectivity, the inability to distinguish between many types of structural isomers, and the inability to unambiguously determine aromatic substitution patterns. Nuclear magnetic resonance spectroscopy (NMR) does not have these limitations; hence it can serve as a complement to mass spectrometry. However, NMR technology is inherently insensitive and its ability to interface with chromatography has been historically challenging. This article describes the application of NMR coupled with liquid chromatography and automated solid phase extraction (SPE-LC/NMR) to the structural analysis of extractable organic compounds from a pharmaceutical packaging material of construction. The SPE-LC/NMR technology combined with micro-cryoprobe technology afforded the sensitivity and sample mass required for full structure elucidation. Optimization of the SPE-LC/NMR analytical method was achieved using a series of model compounds representing the chemical diversity of extractables. This study demonstrates the complementary nature of SPE-LC/NMR with LC/MS for this particular pharmaceutical application. LAY ABSTRACT: The identification of impurities leached into drugs from the components and materials associated with pharmaceutical containers, packaging components, and materials has historically been done using laboratory techniques based on the combination of chromatography with mass spectrometry. Such analytical techniques are widely recognized as having the selectivity and sensitivity required to separate the complex mixtures of impurities often encountered in such identification studies, including both the identification of leachable impurities as well as potential leachable impurities produced by laboratory extraction of packaging components and materials. However, while mass spectrometry-based analytical techniques have limitations for this application, newer analytical techniques based on the combination of chromatography with nuclear magnetic resonance spectroscopy provide an added dimension of structural definition. This article describes the development, optimization, and application of an analytical technique based on the combination of chromatography and nuclear magnetic resonance spectroscopy to the identification of potential leachable impurities from a pharmaceutical packaging material. The complementary nature of the analytical techniques for this particular pharmaceutical application is demonstrated.


Subject(s)
Magnetic Resonance Spectroscopy , Solid Phase Extraction , Chromatography, Liquid , Mass Spectrometry , Pharmaceutical Preparations , Solid Phase Microextraction
SELECTION OF CITATIONS
SEARCH DETAIL
...