Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 37(51): 14846-14855, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34914876

ABSTRACT

Understanding the colloidal stability and aggregation behavior of TiO2 nanoparticles in aqueous suspension is a prerequisite to tune supracolloidal structure formation. While the aggregation mechanism for dried TiO2 nanopowders is well documented, there is still work to be done to understand TiO2 nanoparticle aggregation in suspension. Therefore, this work focuses on the colloidal stability and aggregation mechanism of TiO2 nanoparticle aqueous suspensions prepared using a straightforward one-step sol-gel-based approach over a concentration range of 0.5-5 wt %. Fully crystalline nanoparticles consisting primarily of anatase were obtained. After assessing the colloidal stability of the as-prepared suspensions, small-angle X-ray scattering coupled with fractal analysis was carried out. This analysis showed, for the first time, how the TiO2 nanoparticle aggregation mechanism─predicted by the diffusion limited cluster-cluster aggregation (DLCA) and diffusion limited particle-cluster aggregation (DLA) theories─depends directly on the starting concentration in the aqueous suspensions. We found that concentrated suspensions favored DLA, while dilute suspensions tend to follow the DLCA mechanism. The effect of the aggregation mechanism on the aggregate shape is also discussed.

2.
Molecules ; 26(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34641488

ABSTRACT

The present work highlights the crucial role of the interfacial compatibilization on the design of polylactic acid (PLA)/Magnesium (Mg) composites for bone regeneration applications. In this regard, an amphiphilic poly(ethylene oxide-b-L,L-lactide) diblock copolymer with predefined composition was synthesised and used as a new interface to provide physical interactions between the metallic filler and the biopolymer matrix. This strategy allowed (i) overcoming the PLA/Mg interfacial adhesion weakness and (ii) modulating the composite hydrophilicity, bioactivity and biological behaviour. First, a full study of the influence of the copolymer incorporation on the morphological, wettability, thermal, thermo-mechanical and mechanical properties of PLA/Mg was investigated. Subsequently, the bioactivity was assessed during an in vitro degradation in simulated body fluid (SBF). Finally, biological studies with stem cells were carried out. The results showed an increase of the interfacial adhesion by the formation of a new interphase between the hydrophobic PLA matrix and the hydrophilic Mg filler. This interface stabilization was confirmed by a decrease in the damping factor (tanδ) following the copolymer addition. The latter also proves the beneficial effect of the composite hydrophilicity by selective surface localization of the hydrophilic PEO leading to a significant increase in the protein adsorption. Furthermore, hydroxyapatite was formed in bulk after 8 weeks of immersion in the SBF, suggesting that the bioactivity will be noticeably improved by the addition of the diblock copolymer. This ceramic could react as a natural bonding junction between the designed implant and the fractured bone during osteoregeneration. On the other hand, a slight decrease of the composite mechanical performances was noted.


Subject(s)
Biocompatible Materials/chemistry , Magnesium/chemistry , Mesenchymal Stem Cells/physiology , Polyesters/chemistry , Polymers/chemistry , Adult , Cell Adhesion/physiology , Cells, Cultured , Humans , Mesenchymal Stem Cells/cytology
3.
Materials (Basel) ; 14(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34443174

ABSTRACT

Because of their characteristics, including a d33 of 10-15 pC/N and high stability up to temperatures over 1000 °C, polar glass-ceramics containing fresnoite crystals can be regarded as highly effective materials for applications requiring piezoelectricity at high temperatures. In the present paper we investigate barium substitutions in an Sr-fresnoite (STS) glass-ceramic. Two aspects are studied: first, the effect of the substitution on the preferential orientation of the crystallization, and second, the ability of the glass-ceramics to generate and propagate surface acoustic waves (SAW) at high temperatures. XRD analyses show that a 10 at.% substitution of Ba allows us to keep a strong preferential orientation of the (00l) planes of the fresnoite crystals down to more than 1 mm below the surfaces. Higher substitution levels (25 and 50 at.%), induce a non-oriented volume crystallization mechanism that competes with the surface mechanism. SAW devices were fabricated from glass-ceramic substrates with 0, 10 and 25 at.% Ba substitutions. Temperature testing reveals the high stability of the frequency and delay for all of these devices. The glass-ceramic with a 10 at.% Ba substitution gives the strongest amplitude of the SAW signal. This is attributed to the high (00l) preferential orientation and the absence of disoriented volume crystallization.

SELECTION OF CITATIONS
SEARCH DETAIL
...