Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 21(3)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38806019

ABSTRACT

Objective.Severe traumatic brain injury (sTBI) induced neuronal loss and brain atrophy contribute significantly to long-term disabilities. Brain extracellular matrix (ECM) associated chondroitin sulfate (CS) glycosaminoglycans promote neural stem cell (NSC) maintenance, and CS hydrogel implants have demonstrated the ability to enhance neuroprotection, in preclinical sTBI studies. However, the ability of neuritogenic chimeric peptide (CP) functionalized CS hydrogels in promoting functional recovery, after controlled cortical impact (CCI) and suction ablation (SA) induced sTBI, has not been previously demonstrated. We hypothesized that neuritogenic (CS)CP hydrogels will promote neuritogenesis of human NSCs, and accelerate brain tissue repair and functional recovery in sTBI rats.Approach.We synthesized chondroitin 4-Osulfate (CS-A)CP, and 4,6-O-sulfate (CS-E)CP hydrogels, using strain promoted azide-alkyne cycloaddition (SPAAC), to promote cell adhesion and neuritogenesis of human NSCs,in vitro; and assessed the ability of (CS-A)CP hydrogels in promoting tissue and functional repair, in a novel CCI-SA sTBI model,in vivo. Main results.Results indicated that (CS-E)CP hydrogels significantly enhanced human NSC aggregation and migration via focal adhesion kinase complexes, when compared to NSCs in (CS-A)CP hydrogels,in vitro. In contrast, NSCs encapsulated in (CS-A)CP hydrogels differentiated into neurons bearing longer neurites and showed greater spontaneous activity, when compared to those in (CS-E)CP hydrogels. The intracavitary implantation of (CS-A)CP hydrogels, acutely after CCI-SA-sTBI, prevented neuronal and axonal loss, as determined by immunohistochemical analyses. (CS-A)CP hydrogel implanted animals also demonstrated the significantly accelerated recovery of 'reach-to-grasp' function when compared to sTBI controls, over a period of 5-weeks.Significance.These findings demonstrate the neuritogenic and neuroprotective attributes of (CS)CP 'click' hydrogels, and open new avenues for the development of multifunctional glycomaterials that are functionalized with biorthogonal handles for sTBI repair.


Subject(s)
Brain Injuries, Traumatic , Hydrogels , Neural Stem Cells , Neurites , Rats, Sprague-Dawley , Recovery of Function , Hydrogels/administration & dosage , Animals , Rats , Recovery of Function/drug effects , Recovery of Function/physiology , Humans , Neural Stem Cells/drug effects , Neurites/drug effects , Neurites/physiology , Male , Chondroitin Sulfates/administration & dosage , Chondroitin Sulfates/pharmacology , Glycosaminoglycans/administration & dosage , Cells, Cultured , Neurogenesis/drug effects , Neurogenesis/physiology
2.
Exp Neurol ; 357: 114177, 2022 11.
Article in English | MEDLINE | ID: mdl-35868359

ABSTRACT

Ischemic stroke is a leading cause of morbidity and mortality, with limited treatments that can facilitate brain regeneration. Neural progenitor cells (NPCs) hold promise for replacing tissue lost to stroke, and biomaterial approaches may improve their efficacy to overcome hurdles in clinical translation. The immune response and its role in stroke pathogenesis and regeneration may interplay with critical mechanisms of stem cell and biomaterial therapies. Cellular therapy can modulate the immune response to reduce toxic neuroinflammation early after ischemia. However, few studies have attempted to harness the regenerative effects of neuroinflammation to augment recovery. Our previous studies demonstrated that intracerebrally transplanted NPCs encapsulated in a chondroitin sulfate-A hydrogel (CS-A + NPCs) can improve vascular regeneration after stroke. In this paper, we found that CS-A + NPCs affect the microglia/macrophage response to promote a regenerative phenotype following stroke in mice. Following transplantation, PPARγ-expressing microglia/macrophages, and MCP-1 and IL-10 protein levels are enhanced. Secreted immunomodulatory factor expression of other factors was altered compared to NPC transplantation alone. Post-stroke depression-like behavior was reduced following cellular and material transplantation. Furthermore, we showed in cultures that microglia/macrophages encapsulated in CS-A had increased expression of angiogenic and arteriogenic mediators. Neutralization with anti-IL-10 antibody negated these effects in vitro. Cumulatively, this work provides a framework for understanding the mechanisms by which immunomodulatory biomaterials can enhance the regenerative effects of cellular therapy for ischemic stroke and other brain injuries.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Animals , Biocompatible Materials , Brain/pathology , Brain Ischemia/metabolism , Brain Ischemia/therapy , Glycosaminoglycans , Immunity , Immunomodulation , Ischemia , Mice , Stem Cell Transplantation , Stroke/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...