Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Pathog ; 49(6): 336-47, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20674736

ABSTRACT

Group A Streptococcus (GAS), a human-specific pathogen, is best known for causing pharyngitis ("strep-throat") and necrotizing fasciitis ("flesh-eating disease"). However, the organism is also an uncommon but important cause of community-acquired bronchopneumonia, an infection with an exceptionally high mortality rate. Inasmuch as little is known about the molecular pathogenesis of GAS lower respiratory tract infection, we sought to develop a relevant human infection model. Nine cynomolgus macaques were infected by intra-bronchial instillation of either sterile saline or GAS (10(5) or 10(7) CFU). Animals were continuously monitored and sacrificed at five days post-inoculation. Serial bronchial alveolar lavage specimens and tissues collected at necropsy were used for histologic and immunohistochemical examination, quantitative microbial culture, lung and blood biomarker analysis, and in vivo GAS gene expression studies. The lower respiratory tract disease observed in cynomolgus macaques mimicked the clinical and pathological features of severe GAS bronchopneumonia in humans. This new monkey model will be useful for testing hypotheses bearing on the molecular pathogenesis of GAS in the lower respiratory tract.


Subject(s)
Bronchopneumonia/veterinary , Monkey Diseases/microbiology , Monkey Diseases/pathology , Streptococcal Infections/veterinary , Streptococcus pyogenes/isolation & purification , Animals , Biomarkers/blood , Bronchoalveolar Lavage Fluid/microbiology , Bronchopneumonia/microbiology , Bronchopneumonia/pathology , Disease Models, Animal , Gene Expression Profiling , Immunohistochemistry , Lung/pathology , Macaca fascicularis , Male , Streptococcal Infections/microbiology , Streptococcal Infections/pathology , Streptococcus pyogenes/genetics
2.
Proc Natl Acad Sci U S A ; 107(2): 888-93, 2010 Jan 12.
Article in English | MEDLINE | ID: mdl-20080771

ABSTRACT

Single-nucleotide changes are the most common cause of natural genetic variation among members of the same species, but there is remarkably little information bearing on how they alter bacterial virulence. We recently discovered a single-nucleotide mutation in the group A Streptococcus genome that is epidemiologically associated with decreased human necrotizing fasciitis ("flesh-eating disease"). Working from this clinical observation, we find that wild-type mtsR function is required for group A Streptococcus to cause necrotizing fasciitis in mice and nonhuman primates. Expression microarray analysis revealed that mtsR inactivation results in overexpression of PrsA, a chaperonin involved in posttranslational maturation of SpeB, an extracellular cysteine protease. Isogenic mutant strains that overexpress prsA or lack speB had decreased secreted protease activity in vivo and recapitulated the necrotizing fasciitis-negative phenotype of the DeltamtsR mutant strain in mice and monkeys. mtsR inactivation results in increased PrsA expression, which in turn causes decreased SpeB secreted protease activity and reduced necrotizing fasciitis capacity. Thus, a naturally occurring single-nucleotide mutation dramatically alters virulence by dysregulating a multiple gene virulence axis. Our discovery has broad implications for the confluence of population genomics and molecular pathogenesis research.


Subject(s)
Fasciitis, Necrotizing/genetics , Polymorphism, Single Nucleotide , Virulence/genetics , Animals , Fasciitis, Necrotizing/immunology , Fasciitis, Necrotizing/prevention & control , Genetic Variation , Humans , Macaca fascicularis/microbiology , Male , Mice , Neutrophils/physiology , Serotyping , Shock, Septic/microbiology , Streptococcus pyogenes/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...