Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 55(24): 12982-12996, 2016 Dec 19.
Article in English | MEDLINE | ID: mdl-27989205

ABSTRACT

The disulfide ligand (SC6H4CO2H-4)2 acts as a simple but versatile linker for a range of group 8 transition metals through reaction of the oxygen donors. This leads to a range of homobimetallic ruthenium and osmium alkenyl compounds, [{M(CH═CHR)(CO)(PPh3)2(O2CC6H4S-4)}2] (M = Ru, Os; R = C6H4Me-4). Additional metal-based functionality can be added through the use of precursors incorporating rhenium bipyridine units (R = (bpy)ReCl(CO)3). The more robust diphosphine ligands in [{Ru(dppm)2(O2CC6H4S-4)}2]2+ (dppm = diphenylphosphinomethane) allow reduction of the disulfide bond with sodium borohydride to yield the thiol complex [Ru(O2CC6H4SH-4)(dppm)2]+. This complex reacts with [AuCl(PPh3)] to afford the bimetallic compound [Ru(dppm)2(O2CC6H4S-4)Au(PPh3)]+. However, an improved route to the same and related heterobimetallic compounds is provided by the reaction of cis-[RuCl2(dppm)2] with [Au(SC6H4CO2H-4)(L)] (L = PPh3, PCy3, PMe3, IDip) in the presence of base and NH4PF6 (IDip = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene). The heterotrimetallic compound [Au(SC6H4CO2Ru(dppm)2)2]+ is accessible through the reaction of the homoleptic gold(I) dithiolate [Au(SC6H4CO2H-4)2]PPN (PPN = bis(triphenylphosphine)iminium) with cis-[RuCl2(dppm)2]. Without departure from the same methodology, greater complexity can be incorporated into the system to provide the penta- and heptametallic assemblies [(dppf){AuSC6H4CO2Ru(dppm)2}2]2+ and [(dppf){AuSC6H4CO2Os(CH═CH-bpyReCl(CO)3)(CO)(PPh3)2}2]. The same stepwise approach provides the dinuclear organometallic complexes [(L)Au(SC6H4CO2-4)M(CH═CHC6H4Me-4)(CO)(PPh3)2] (M = Ru, Os; L = PPh3, IDip). Complexes containing three metals from different groups of the periodic table [(L)Au(SC6H4CO2-4)M{CH═CH-bpyReCl(CO)3}(CO)(PPh3)2] (M = Ru, Os) can also be prepared, with one ruthenium example (L = PPh3) being structurally characterized. In order to illustrate the versatility of this approach, the synthesis and characterization (IR and NMR spectroscopy, TEM, EDS, and TGA) of the functionalized gold and palladium nanoparticles Au@[SC6H4CO2Ru(dppm)2]+ and Pd@[SC6H4CO2Ru(dppm)2]+ is reported.

2.
Inorg Chem ; 54(9): 4222-30, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25880131

ABSTRACT

The HCl salt of the aminodiphosphine ligand HN(CH2CH2PPh2)2 reacts with [M(CO)4(pip)2] (M = Mo, W; pip = piperidine) to yield [M{κ(2)-HN(CH2CH2PPh2)2}(CO)4]. The molybdenum analogue readily loses a carbonyl ligand to form [Mo{κ(3)-HN(CH2CH2PPh2)2}(CO)3], which was structurally characterized. The same ligand backbone is used to form the new bifunctional ligand, KS2CN(CH2CH2PPh2)2, which reacts with nickel and cobalt precursors to yield [Ni{S2CN(CH2CH2PPh2)2}2] and [Co{S2CN(CH2CH2PPh2)2}3]. Addition of [AuCl(tht)] (tht = tetrahydrothiophene) to [Ni{S2CN(CH2CH2PPh2)2}2] leads to formation of the pentametallic complex, [Ni{S2CN(CH2CH2PPh2AuCl)2}2]. In contrast, addition of [PdCl2(py)2] (py = pyridine) to [Ni{S2CN(CH2CH2PPh2)2}2] does not lead to a trimetallic complex but instead yields the transmetalated cyclic compound [Pd{S2CN(CH2CH2PPh2)2}]2, which was structurally characterized. The same product is obtained directly from [PdCl2(py)2] and KS2CN(CH2CH2PPh2)2. In contrast, the same reaction with [PtCl2(NCPh)2] yields the oligomer, [Pt{S2CN(CH2CH2PPh2)2}]n. Reaction of KS2CN(CH2CH2PPh2)2 with cis-[RuCl2(dppm)2] provides [Ru{S2CN(CH2CH2PPh2)2}(dppm)2](+), which reacts with [AuCl(tht)] to yield [Ru{S2CN(CH2CH2PPh2AuCl)2}(dppm)2](+). Addition of [M(CO)4(pip)2] (M = Mo, W) to the same precursor leads to formation of the bimetallic compounds [(dppm)2Ru{S2CN(CH2CH2PPh2)2}M(CO)4](+), while treatment with [ReCl(CO)5] yields [(dppm)2Ru{S2CN(CH2CH2PPh2)2}ReCl(CO)3](+). Reaction of KS2CN(CH2CH2PPh2)2 with [Os(CH═CHC6H4Me-4)Cl(CO)(BTD)(PPh3)2] (BTD = 2,1,3-benzothiadiazole) provides [Os(CH═CHC6H4Me-4){S2CN(CH2CH2PPh2)2}(CO)(PPh3)2], but reaction with the analogous ruthenium precursor fails to yield a clean product.

3.
Chemistry ; 19(36): 11963-74, 2013 Sep 02.
Article in English | MEDLINE | ID: mdl-23868578

ABSTRACT

A facile strategy has been explored for loading noble metals onto the surface of ferrite nanoparticles with the assistance of phosphine-functionalized linkers. Palladium loading is shown to occur with participation of both the phosphine function and the surface hydroxyl groups. Hybrid nanoparticles containing simultaneously Pd and Au (or Rh) are obtained by successive loading of metals. Similarly, ferrite nanoparticles decorated with Pd, Au, and Rh have also been formed by using the same strategy. The catalytic properties of the new nanoparticles are evidenced in processes such as reduction of 4-nitrophenol or hydrogenation of styrene. Besides, the sequential process involving a cross-coupling reaction followed by reduction of 1-nitrobiphenyl has been successfully achieved by employing Pd/Au decorated nanoferrite particles.


Subject(s)
Ferric Compounds/chemistry , Metal Nanoparticles/chemistry , Nitrophenols/chemistry , Styrene/chemistry , Catalysis , Hydrogenation , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...