Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 114(7): 2484-92, 2010 Feb 25.
Article in English | MEDLINE | ID: mdl-20121175

ABSTRACT

With the objective of establishing the importance of water flexibility in empirical models which explicitly include nuclear quantum effects, we have carried out path integral Monte Carlo simulations in water clusters with up to seven molecules. Two recently developed models have been used for comparison: the rigid TIP4PQ/2005 and the flexible q-TIP4P/F models, both inspired by the rigid TIP4P/2005 model. To obtain a starting configuration for our simulations, we have located the global minima for the rigid TIP4P/2005 and TIP4PQ/2005 models and for the flexible q-TIP4P/F model. All the structures are similar to those predicted by the rigid TIP4P potential showing that the charge distribution mainly determines the global minimum structure. For the flexible q-TIP4P/F model, we have studied the geometrical distortion upon isotopic substitution by studying tritiated water clusters. Our results show that tritiated water clusters exhibit an r(OT) distance shorter than the r(OH) distance in water clusters, not significant changes in the Phi(HOH) angle, and a lower average dipole moment than water clusters. We have also carried out classical simulations with the rigid TIP4PQ/2005 model showing that the rotational kinetic energy is greatly affected by quantum effects, but the translational kinetic energy is only slightly modified. The potential energy is also noticeably higher than in classical simulations. Finally, as a concluding remark, we have calculated the formation energies of water clusters using both models, finding that the formation energies predicted by the rigid TIP4PQ/2005 model are lower by roughly 0.6 kcal/mol than those of the flexible q-TIP4P/F model for clusters of moderate size, the origin of this difference coming mainly from the geometrical distortion of the water molecule in the clusters that causes an increase in the intramolecular potential energy.


Subject(s)
Quantum Theory , Water/chemistry , Kinetics , Models, Molecular , Monte Carlo Method , Thermodynamics
2.
J Chem Phys ; 125(22): 224302, 2006 Dec 14.
Article in English | MEDLINE | ID: mdl-17176136

ABSTRACT

We study the water octamer in a uniform electric field using the all-exchanges parallel tempering Monte Carlo method in the canonical ensemble. The heat capacity, quenched energy configurations, and the order parameter Q(4) are employed to understand the phase changes observed as a function of temperature and the strength of the applied electric field. At a low field strength of 0.1 V A(-1) a solidlike to liquidlike "melting" transition is detected. The corresponding heat capacity peak appears around 206 K, where Q(4) shows a significant change of slope. For E> or =0.5 V A(-1) such features are absent. However, at E=0.5 V A(-1) we find a solidlike to solidlike transition between cubic and extended structures around T approximately 25 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...