Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 156(1-2): 221-35, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24439378

ABSTRACT

Males of most species are more aggressive than females, but the neural mechanisms underlying this dimorphism are not clear. Here, we identify a neuron and a gene that control the higher level of aggression characteristic of Drosophila melanogaster males. Males, but not females, contain a small cluster of FruM(+) neurons that express the neuropeptide tachykinin (Tk). Activation and silencing of these neurons increased and decreased, respectively, intermale aggression without affecting male-female courtship behavior. Mutations in both Tk and a candidate receptor, Takr86C, suppressed the effect of neuronal activation, whereas overexpression of Tk potentiated it. Tk neuron activation overcame reduced aggressiveness caused by eliminating a variety of sensory or contextual cues, suggesting that it promotes aggressive arousal or motivation. Tachykinin/Substance P has been implicated in aggression in mammals, including humans. Thus, the higher aggressiveness of Drosophila males reflects the sexually dimorphic expression of a neuropeptide that controls agonistic behaviors across phylogeny.


Subject(s)
Drosophila melanogaster/physiology , Neurons/metabolism , Tachykinins/metabolism , Aggression , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Female , Male , Mutation , Receptors, Tachykinin/genetics , Receptors, Tachykinin/metabolism , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...