Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Alzheimers Dis ; 99(1): 1-20, 2024.
Article in English | MEDLINE | ID: mdl-38640152

ABSTRACT

Alzheimer's disease (AD) is a chronic neurodegenerative disorder with a global impact. The past few decades have witnessed significant strides in comprehending the underlying pathophysiological mechanisms and developing diagnostic methodologies for AD, such as neuroimaging approaches. Neuroimaging techniques, including positron emission tomography and magnetic resonance imaging, have revolutionized the field by providing valuable insights into the structural and functional alterations in the brains of individuals with AD. These imaging modalities enable the detection of early biomarkers such as amyloid-ß plaques and tau protein tangles, facilitating early and precise diagnosis. Furthermore, the emerging technologies encompassing blood-based biomarkers and neurochemical profiling exhibit promising results in the identification of specific molecular signatures for AD. The integration of machine learning algorithms and artificial intelligence has enhanced the predictive capacity of these diagnostic tools when analyzing complex datasets. In this review article, we will highlight not only some of the most used diagnostic imaging approaches in neurodegeneration research but focus much more on new tools like artificial intelligence, emphasizing their application in the realm of AD. These advancements hold immense potential for early detection and intervention, thereby paving the way for personalized therapeutic strategies and ultimately augmenting the quality of life for individuals affected by AD.


Subject(s)
Alzheimer Disease , Artificial Intelligence , Early Diagnosis , Neuroimaging , Humans , Alzheimer Disease/diagnostic imaging , Neuroimaging/methods , Brain/diagnostic imaging , Brain/metabolism , Positron-Emission Tomography/methods , Biomarkers/analysis
2.
Sensors (Basel) ; 24(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339684

ABSTRACT

This review delves into the critical role of automation and sensor technologies in optimizing parameters for thermal treatments within electrical power generation. The demand for efficient and sustainable power generation has led to a significant reliance on thermal treatments in power plants. However, ensuring precise control over these treatments remains challenging, necessitating the integration of advanced automation and sensor systems. This paper evaluates the pivotal aspects of automation, emphasizing its capacity to streamline operations, enhance safety, and optimize energy efficiency in thermal treatment processes. Additionally, it highlights the indispensable role of sensors in monitoring and regulating crucial parameters, such as temperature, pressure, and flow rates. These sensors enable real-time data acquisition, facilitating immediate adjustments to maintain optimal operating conditions and prevent system failures. It explores the recent technological advancements, including machine learning algorithms and IoT integration, which have revolutionized automation and sensor capabilities in thermal treatment control. Incorporating these innovations has significantly improved the precision and adaptability of control systems, resulting in heightened performance and reduced environmental impact. This review underscores the imperative nature of automation and sensor technologies in thermal treatments for electrical power generation, emphasizing their pivotal role in enhancing operational efficiency, ensuring reliability, and advancing sustainability in power generation processes.

3.
Sci Rep ; 14(1): 3400, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38336889

ABSTRACT

Enhancements in the structural and operational aspects of transportation are important for achieving high-quality mobility. Toll plazas are commonly known as a potential bottleneck stretch, as they tend to interfere with the normality of the flow due to the charging points. Focusing on the automation of toll plazas, this research presents the development of an axle counter to compose a free-flow toll collection system. The axle counter is responsible for the interpretation of images through algorithms based on computer vision to determine the number of axles of vehicles crossing in front of a camera. The You Only Look Once (YOLO) model was employed in the first step to identify vehicle wheels. Considering that several versions of this model are available, to select the best model, YOLOv5, YOLOv6, YOLOv7, and YOLOv8 were compared. The YOLOv5m achieved the best result with precision and recall of 99.40% and 98.20%, respectively. A passage manager was developed thereafter to verify when a vehicle passes in front of the camera and store the corresponding frames. These frames are then used by the image reconstruction module which creates an image of the complete vehicle containing all axles. From the sequence of frames, the proposed method is able to identify when a vehicle was passing through the scene, count the number of axles, and automatically generate the appropriate charge to be applied to the vehicle.

4.
Sensors (Basel) ; 20(3)2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32041156

ABSTRACT

Traditional physiotherapy rehabilitation systems are evolving into more advanced systems based on exoskeleton systems and Virtual Reality (VR) environments that enhance and improve rehabilitation techniques and physical exercise. In addition, due to current connected systems and paradigms such as the Internet of Things (IoT) or Ambient Intelligent (AmI) systems, it is possible to design and develop advanced, effective, and low-cost medical tools that patients may have in their homes. This article presents a low-cost exoskeleton for the elbow that is connected to a Context-Aware architecture and thanks to a VR system the patient can perform rehabilitation exercises in an interactive way. The integration of virtual reality technology in rehabilitation exercises provides an intensive, repetitive and task-oriented capacity to improve patient motivation and reduce work on medical professionals. One of the system highlights is the intelligent ability to generate new exercises, monitor the exercises performed by users in search of progress or possible problems and the dynamic modification of the exercises characteristics. The platform also allows the incorporation of commercial medical sensors capable of collecting valuable information for greater accuracy in the diagnosis and evolution of patients. A case study with real patients with promising results has been carried out.


Subject(s)
Elbow Joint/physiology , Exercise Therapy , Exoskeleton Device , Virtual Reality , Biomechanical Phenomena , Humans
5.
Sensors (Basel) ; 19(19)2019 Oct 05.
Article in English | MEDLINE | ID: mdl-31590354

ABSTRACT

With the growing number of heterogeneous resource-constrained devices connected to the Internet, it becomes increasingly challenging to secure the privacy and protection of data. Strong but efficient cryptography solutions must be employed to deal with this problem, along with methods to standardize secure communications between these devices. The PRISEC module of the UbiPri middleware has this goal. In this work, we present the performance of the AES (Advanced Encryption Standard), RC6 (Rivest Cipher 6), Twofish, SPECK128, LEA, and ChaCha20-Poly1305 algorithms in Internet of Things (IoT) devices, measuring their execution times, throughput, and power consumption, with the main goal of determining which symmetric key ciphers are best to be applied in PRISEC. We verify that ChaCha20-Poly1305 is a very good option for resource constrained devices, along with the lightweight block ciphers SPECK128 and LEA.

6.
Sensors (Basel) ; 19(14)2019 Jul 13.
Article in English | MEDLINE | ID: mdl-31337032

ABSTRACT

With the growing number of mobile devices receiving daily notifications, it is necessary to manage the variety of information produced. New smart devices are developed every day with the ability to generate, send, and display messages about their status, data, and information about other devices. Consequently, the number of notifications received by a user is increasing and their tolerance may decrease in a short time. With this, it is necessary to develop a management system and notification controls. In this context, this work proposes a notification and alert management system called PRISER. Its focus is on user profiles and environments, applying data privacy criteria.

SELECTION OF CITATIONS
SEARCH DETAIL
...