Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Insect Sci ; 23(3)2023 May 01.
Article in English | MEDLINE | ID: mdl-37279521

ABSTRACT

The microsporidian, Nosema maddoxi Becnel, Solter, Hajek, Huang, Sanscrainte & Estep, infects brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), populations in North America and Asia and causes decreased fitness in infected insects. This host overwinters as adults, often in aggregations in sheltered locations, and variable levels of mortality occur over the winter. We investigated pathogen prevalence in H. halys adults before, during, and after overwintering. Population level studies resulted in detection of N. maddoxi in H. halys in 6 new US states, but no difference in levels of infection by N. maddoxi in autumn versus the following spring. Halyomorpha halys that self-aggregated for overwintering in shelters deployed in the field were maintained under simulated winter conditions (4°C) for 5 months during the 2021-2022 winter and early spring, resulting in 34.6 ± 4.8% mortality. Over the 2020-2021 and 2021-2022 winters, 13.4 ± 3.5% of surviving H. halys in shelters were infected with N. maddoxi, while N. maddoxi infections were found in 33.4 ± 10.8% of moribund and dead H. halys that accumulated in shelters. A second pathogen, Colletotrichum fioriniae Marcelino & Gouli, not previously reported from H. halys, was found among 46.7 ± 7.8% of the H. halys that died while overwintering, but levels of infection decreased after overwintering. These 2 pathogens occurred as co-infections in 11.1 ± 5.9% of the fungal-infected insects that died while overwintering. Increasing levels of N. maddoxi infection caused epizootics among H. halys reared in greenhouse cages after overwintering.


Subject(s)
Heteroptera , Animals , Seasons
2.
J Invertebr Pathol ; 199: 107939, 2023 07.
Article in English | MEDLINE | ID: mdl-37236421

ABSTRACT

An epizootic caused by fungal pathogens occurred among Halyomorpha halys, brown marmorated stink bugs, while they were overwintering, with infections also occurring after overwintering. We report that one of the two pathogens responsible was Colletotrichum fioriniae (Marcelino & Gouli) Pennycook; a species well known as a plant pathogen and endophyte and which has only previously been reported naturally infecting elongate hemlock scales, Fiorinia externa. To prove pathogenicity, H. halys adults challenged with conidia died from infections and the fungus subsequently produced conidia externally on cadavers.


Subject(s)
Colletotrichum , Heteroptera , Animals , Plants , Cadaver
3.
mBio ; 14(2): e0026123, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36883814

ABSTRACT

In 1970, the Southern Corn Leaf Blight epidemic ravaged U.S. fields to great economic loss. The outbreak was caused by never-before-seen, supervirulent, Race T of the fungus Cochliobolus heterostrophus. The functional difference between Race T and O, the previously known, far less aggressive strain, is production of T-toxin, a host-selective polyketide. Supervirulence is associated with ~1 Mb of Race T-specific DNA; only a fraction encodes T-toxin biosynthetic genes (Tox1). Tox1 is genetically and physically complex, with unlinked loci (Tox1A, Tox1B) genetically inseparable from breakpoints of a Race O reciprocal translocation that generated hybrid Race T chromosomes. Previously, we identified 10 genes for T-toxin biosynthesis. Unfortunately, high-depth, short-read sequencing placed these genes on four small, unconnected scaffolds surrounded by repeated A+T rich sequence, concealing context. To sort out Tox1 topology and pinpoint the hypothetical Race O translocation breakpoints corresponding to Race T-specific insertions, we undertook PacBio long-read sequencing which revealed Tox1 gene arrangement and the breakpoints. Six Tox1A genes are arranged as three small islands in a Race T-specific sea (~634 kb) of repeats. Four Tox1B genes are linked, on a large loop of Race T-specific DNA (~210 kb). The race O breakpoints are short sequences of race O-specific DNA; corresponding positions in race T are large insertions of race T-specific, A+T rich DNA, often with similarity to transposable (predominantly Gypsy) elements. Nearby, are 'Voyager Starship' elements and DUF proteins. These elements may have facilitated Tox1 integration into progenitor Race O and promoted large scale recombination resulting in race T. IMPORTANCE In 1970 a corn disease epidemic ravaged fields in the United States to great economic loss. The outbreak was caused by a never-before seen, supervirulent strain of the fungal pathogen Cochliobolus heterostrophus. This was a plant disease epidemic, however, the current COVID-19 pandemic of humans is a stark reminder that novel, highly virulent, pathogens evolve with devastating consequences, no matter what the host-animal, plant, or other organism. Long read DNA sequencing technology allowed in depth structural comparisons between the sole, previously known, much less aggressive, version of the pathogen and the supervirulent version and revealed, in meticulous detail, the structure of the unique virulence-causing DNA. These data are foundational for future analysis of mechanisms of DNA acquisition from a foreign source.


Subject(s)
Ascomycota , COVID-19 , Mycotoxins , Toxins, Biological , Humans , Virulence/genetics , Fungal Proteins/genetics , Pandemics , Toxins, Biological/metabolism , Plant Diseases/microbiology
4.
Nat Commun ; 13(1): 4828, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35973982

ABSTRACT

The genomes of many filamentous fungi, such as Aspergillus spp., include diverse biosynthetic gene clusters of unknown function. We previously showed that low copper levels upregulate a gene cluster that includes crmA, encoding a putative isocyanide synthase. Here we show, using untargeted comparative metabolomics, that CrmA generates a valine-derived isocyanide that contributes to two distinct biosynthetic pathways under copper-limiting conditions. Reaction of the isocyanide with an ergot alkaloid precursor results in carbon-carbon bond formation analogous to Strecker amino-acid synthesis, producing a group of alkaloids we term fumivalines. In addition, valine isocyanide contributes to biosynthesis of a family of acylated sugar alcohols, the fumicicolins, which are related to brassicicolin A, a known isocyanide from Alternaria brassicicola. CrmA homologs are found in a wide range of pathogenic and non-pathogenic fungi, some of which produce fumicicolin and fumivaline. Extracts from A. fumigatus wild type (but not crmA-deleted strains), grown under copper starvation, inhibit growth of diverse bacteria and fungi, and synthetic valine isocyanide shows antibacterial activity. CrmA thus contributes to two biosynthetic pathways downstream of trace-metal sensing.


Subject(s)
Anti-Infective Agents , Biosynthetic Pathways , Anti-Bacterial Agents/metabolism , Anti-Infective Agents/metabolism , Aspergillus fumigatus/metabolism , Carbon/metabolism , Copper/metabolism , Cyanides , Fungi/genetics , Multigene Family , Valine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...