Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rep ; 11(5): e15564, 2023 03.
Article in English | MEDLINE | ID: mdl-36898692

ABSTRACT

This study verified whether mechanical variables influence the anaerobic capacity outcome on treadmill running and whether these likely influences were dependent of running experience. Seventeen physical active and 18 amateur runners, males, performed a graded exercise test and constant load exhaustive running efforts at 115% of intensity associated to maximal oxygen consumption. During the constant load were determined the metabolic responses (i.e., gas exchange and blood lactate) to estimate the energetic contribution and anaerobic capacity as well as kinematic responses. The runners showed higher anaerobic capacity (16.6%; p = 0.005), but lesser time to exercise failure (-18.8%; p = 0.03) than active subjects. In addition, the stride length (21.4%; p = 0.00001), contact phase duration (-11.3%; p = 0.005), and vertical work (-29.9%; p = 0.015). For actives, the anaerobic capacity did not correlate significantly with any physiologic, kinematic, and mechanical variables and no regression model was fitted using the stepwise multiple regression, while to runners the anaerobic capacity was significantly correlated with phosphagen energetic contribution (r = 0.47; p = 0.047), external power (r = -0.51; p = 0.031), total work (r = -0.54; p = 0.020), external work (r = -0.62; p = 0.006), vertical work (r = -0.63; p = 0.008), and horizontal work (r = -0.61; p = 0.008), and the vertical work and phosphagen energetic contribution presented a coefficient of determination of 62% (p = 0.001). Based on findings, it is possible to assume that for active subjects, the mechanical variables have no influence over the anaerobic capacity, however, for experienced runners, the vertical work and phosphagen energetic contribution have relevant effect over anaerobic capacity output.


Subject(s)
Exercise Test , Running , Male , Humans , Anaerobiosis , Oxygen Consumption/physiology , Running/physiology , Exercise
2.
Eur J Sport Sci ; 19(5): 645-652, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30452310

ABSTRACT

The purpose of this study was to investigate the use of a single 3-min all-out maximal effort to estimate anaerobic capacity (AC) through the lactate and excess post-exercise oxygen consumption (EPOC) response methods (AC[La-]+EPOCfast) on a cycle ergometer. Eleven physically active men (age = 28.1 ± 4.0 yrs, height = 175.1 ± 4.2 cm, body mass = 74.8 ± 11.9 kg and ⩒O2max = 40.7 ± 7.3 mL kg-1 min-1), participated in the study and performed: i) five submaximal efforts, ii) a supramaximal effort at 115% of intensity of ⩒O2max, and iii) a 3-min all-out maximal effort. Anaerobic capacity was estimated using the supramaximal effort through conventional maximal accumulated oxygen deficit (MAOD) and also through the sum of oxygen equivalents from the glycolytic (fast component of excess post-exercise oxygen consumption) and phosphagen pathways (blood lactate accumulation) (AC[La-]+EPOCfast), while during the 3-min all-out maximal effort the anaerobic capacity was estimated using the AC[La-]+EPOCfast procedure. There were no significant differences between the three methods (p > 0.05). Additionally, the anaerobic capacity estimated during the 3-min all-out effort was significantly correlated with the MAOD (r = 0.74; p = 0.009) and AC[La-]+EPOCfast methods (r = 0.65; p = 0.029). Therefore, it is possible to conclude that the 3-min all-out effort is valid to estimate anaerobic capacity in physically active men during a single cycle ergometer effort.


Subject(s)
Anaerobic Threshold , Ergometry/standards , Lactic Acid/blood , Oxygen Consumption , Adult , Exercise Test , Glycolysis , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...