Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
J Cyst Fibros ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39327194

ABSTRACT

Interdisciplinary teams care for people with cystic fibrosis (pwCF) at specialized treatment centers. These teams have laid the foundation for the cystic fibrosis (CF) care model responsible for gains in health outcomes and quality of life within the CF community. However, the landscape of CF care is transforming, invigorated by new technologies, accessibility of cystic fibrosis transmembrane conductance regulator (CFTR) therapies, and increased utilization of telemedicine. In light of these advances, it is appropriate to re-evaluate the CF care team structure. This position paper offers guidance for the structure of a CF care center designed to meet the evolving needs of the CF community. Fundamental to the proposed center structure is recognition of pwCF and their families as integral members of their care teams, underpinning the necessity for shared decision making, awareness of social determinants of health, and active partnership between all healthcare professionals involved in the care of pwCF.

2.
STAR Protoc ; 5(3): 103259, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39128006

ABSTRACT

Electrophoretic deposition is a straightforward method for synthesizing high-quality photoanodes. We present a protocol for synthesizing a TiO2-modified boron-doped diamond photoanode (BDD/TiO2) via electrophoretic deposition, detailing the chemical and electrochemical treatments applied to the bare BDD electrode prior to use. We provide a step-by-step guide for performing photoelectrochemical characterization under both dark and light conditions and describe an optical technique for investigating band-gap energy. For complete details on the use and execution of this protocol, please refer to Quilumbaquin et al.1.


Subject(s)
Boron , Diamond , Electrochemical Techniques , Electrodes , Titanium , Titanium/chemistry , Boron/chemistry , Diamond/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Photochemical Processes , Electrophoresis/methods
3.
J Proteomics ; 307: 105269, 2024 09 15.
Article in English | MEDLINE | ID: mdl-39098729

ABSTRACT

Quantitative phosphoproteomic data has mostly been reported from experiments comparing relative phosphopeptides intensities in two or more different conditions, while the ideal parameter to compare is phosphopeptides occupancies. This term is scarcely used and therefore barely implemented in phosphoproteomics studies, and this should be of concern for the scientific journals. In order to demonstrate the relevance of this issue, here we show how the method of choice affects the interpretation of the data. The phosphoproteomic profile modulated in two AML cell lines after CK2 inhibition with CIGB-300 or CX-4945 is shown. Following the downstream action of CK2 the phosphosite intensity and occupancy results were compared to validate the best approach for quantitative phosphoproteomic studies. Even when the total number of quantified phosphopeptides was higher by using the intensity calculation, in all the cases the percent of CK2 consensus sequences which were down-regulated in response to CK2 inhibition was higher using the phosphosite occupancy quantification. To note, a high number of CK2 consensus sequences was found down-regulated with at least a 10% or 15% of phosphosite occupancy variation illustrating that low thresholds of occupancy modulation might be indicative of biological effect. Additionally, several biological processes only appear significantly over-represented in the phosphoproteome quantified by occupancy. The functional enrichment analysis per ranges of occupancy variations also illustrated clear differences among AML cell lines subjected to CK2 inhibition by CX-4945. A low overlap between the phosphoproteomes quantified by intensity and occupancy was obtained illustrating that new developments in proteomics techniques are needed to improve the performance of the occupancy approach. Even in such context, results indicate that occupancy quantification performs better than phosphorylation quantification based on intensity reinforcing the importance of such quantification approach to describe phosphoproteomic data.


Subject(s)
Casein Kinase II , Phosphopeptides , Proteomics , Casein Kinase II/metabolism , Casein Kinase II/antagonists & inhibitors , Humans , Phosphopeptides/analysis , Phosphopeptides/metabolism , Proteomics/methods , Cell Line, Tumor , Phosphoproteins/metabolism , Phosphoproteins/analysis , Phosphorylation , Naphthyridines/pharmacology , Phenazines , Proteome/analysis , Proteome/metabolism , Leukemia, Myeloid, Acute/metabolism
4.
iScience ; 27(3): 109192, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38433924

ABSTRACT

Microplastic (MP) accumulation in the environment is accelerating rapidly, which has led to their effects on both the ecosystem and human life garnering much attention. This study is the first to examine the degradation of high-density polyethylene (HDPE) MPs via photoelectrocatalysis (PEC) using a TiO2-modified boron-doped diamond (BDD/TiO2) photoanode. This study was divided into three stages: (i) preparation of the photoanode through electrophoretic deposition of synthetic TiO2 nanoparticles on a BDD electrode; (ii) characterization of the modified photoanode using electrochemical, structural, and optical techniques; and (iii) degradation of HDPE MPs by electrochemical oxidation and photoelectrocatalysis on bare and modified BDD electrodes under dark and UV light conditions. The results indicate that the PEC technique degraded 89.91 ± 0.08% of HDPE MPs in a 10-h reaction and was more efficient at a lower current density (6.89 mA cm-1) with the BDD/TiO2 photoanode compared to electrochemical oxidation on bare BDD.

5.
Front Immunol ; 14: 1227268, 2023.
Article in English | MEDLINE | ID: mdl-37936684

ABSTRACT

Introduction: The antinociceptive and pharmacological activities of C-Phycocyanin (C-PC) and Phycocyanobilin (PCB) in the context of inflammatory arthritis remain unexplored so far. In the present study, we aimed to assess the protective actions of these compounds in an experimental mice model that replicates key aspects of human rheumatoid arthritis. Methods: Antigen-induced arthritis (AIA) was established by intradermal injection of methylated bovine serum albumin in C57BL/6 mice, and one hour before the antigen challenge, either C-PC (2, 4, or 8 mg/kg) or PCB (0.1 or 1 mg/kg) were administered intraperitoneally. Proteome profiling was also conducted on glutamate-exposed SH-SY5Y neuronal cells to evaluate the PCB impact on this key signaling pathway associated with nociceptive neuronal sensitization. Results and discussion: C-PC and PCB notably ameliorated hypernociception, synovial neutrophil infiltration, myeloperoxidase activity, and the periarticular cytokine concentration of IFN-γ, TNF-α, IL-17A, and IL-4 dose-dependently in AIA mice. In addition, 1 mg/kg PCB downregulated the gene expression for T-bet, RORγ, and IFN-γ in the popliteal lymph nodes, accompanied by a significant reduction in the pathological arthritic index of AIA mice. Noteworthy, neuronal proteome analysis revealed that PCB modulated biological processes such as pain, inflammation, and glutamatergic transmission, all of which are involved in arthritic pathology. Conclusions: These findings demonstrate the remarkable efficacy of PCB in alleviating the nociception and inflammation in the AIA mice model and shed new light on mechanisms underlying the PCB modulation of the neuronal proteome. This research work opens a new avenue to explore the translational potential of PCB in developing a therapeutic strategy for inflammation and pain in rheumatoid arthritis.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Neuroblastoma , Humans , Mice , Animals , Phycocyanin/adverse effects , Nociception , Proteome , Neutrophil Infiltration , Mice, Inbred C57BL , Arthritis, Rheumatoid/drug therapy , Inflammation/drug therapy , Gene Expression , Cytokines/pharmacology , Pain
6.
ACS Omega ; 8(15): 13763-13774, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37091431

ABSTRACT

An improvement in chitosan film photoluminescence was observed after adding LiClO4. FTIR spectra, XPS, DFT calculations, and XRD measurements show an alteration of the H-bonds and an increase in the amorphous character of chitosan. PL spectra display a growth in intensity in the visible region along with the incorporation of lithium, signaling a possible rise in the population density of tail states and, consequently, better photon absorption, as observed from UV-vis measurements. A mechanism through aggregation-induced emission effect is proposed to explain the different results. Although this work establishes the relation between structural changes provoked by LiClO4 incorporation and luminescence in the case of chitosan, we expect that the same approach could be generalized to similar polymeric structures.

7.
Biochimie ; 213: 41-53, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37105301

ABSTRACT

Subtilisin-like enzymes are recognized as key players in many infectious agents. In this context, its inhibitors are very valuable molecular lead compounds for structure based drug discovery and design. Marine invertebrates offer a great source of bioactive molecules, including protease inhibitors. In this work, we describe a new subtilisin inhibitor, from the sea anemone Condylactis gigantea (CogiTx1). CogiTx1 was purified using a combination of cation exchange chromatography, size exclusion chromatography and RP-HPLC chromatography. CogiTx1 it is a protein with 46 amino acid residues, with 4970.44 Da and three disulfide bridges. Is also able to inhibit subtilisin-like enzymes and pancreatic elastase. According to the amino acid sequence, it belongs to the defensin 4 family of proteins. The sequencing showed that CogiTx1 has an amidated C-terminal end, which was confirmed by the presence of the typical -XGR signal for amidation in the protein sequence deduced from the cDNA. This modification was described at protein level for the first time in this family of proteins. CogiTx1 is the first subtilisin inhibitor from the defensin 4 family and accordingly it has a folding consisting primarily in beta-strands in agreement with the analysis by CD and 3D modelling. Therefore, future in-depth functional studies may allow a more detailed characterization and will shed light on structure-function properties.


Subject(s)
Sea Anemones , Animals , Sea Anemones/chemistry , Sea Anemones/metabolism , Subtilisins/metabolism , Amino Acid Sequence , Protease Inhibitors/metabolism , Defensins/genetics , Defensins/pharmacology
8.
Womens Health (Lond) ; 18: 17455057221117976, 2022.
Article in English | MEDLINE | ID: mdl-35989614

ABSTRACT

AIMS: To explore the differences in some maternal-neonatal metabolic markers and placenta status by foetal sex. METHODS: One hundred thirty-nine Caucasian pregnant women from the GESTAFIT project and their new-borns were included in the present cross-sectional study. Serum cardiometabolic markers (i.e. lipid and glycaemic profile and uric acid) were analysed at late pregnancy and at birth. In placenta, telomeres length, proportion of deleted mitochondrial-DNA and mitochondrial-DNA density, some minerals and interleukin 8, epidermal growth factor, fibroblast growth factor-2 and vascular endothelial growth factor were measured. The study was run between November 2015 and April 2018. RESULTS: Mothers carrying a male showed higher serum triglycerides than mothers carrying a female at late pregnancy (p < .05). Serum total and low-density lipoprotein cholesterol were greater in males' umbilical cord blood artery compared to females' new-borns (both, p < .05). Mothers of males and male new-borns presented higher uric acid than mothers of females and female new-borns at birth (p < .05). Female's placentas presented greater placental-newborn weight ratio, manganese content and fibroblast growth factor-2 (all, p ⩽ .05), and evidence of statistical significance in telomeres length, which were 17% longer (p = .076). CONCLUSION: Our findings show weak differences in some cardiometabolic and placental status markers by foetal sex. Notwithstanding, we observed a slightly more proatherogenic profile in both, mothers carrying males' foetuses and male new-borns. We also found lower serum uric acid and better placenta status in mothers carrying a female. These findings indicate that foetal sex might need to be considered for a more personalized follow-up of pregnancies.


Subject(s)
Cardiovascular Diseases , Placenta , Biomarkers , Cardiovascular Diseases/metabolism , Cross-Sectional Studies , DNA/metabolism , Female , Fibroblast Growth Factor 2/metabolism , Humans , Infant, Newborn , Male , Placenta/metabolism , Pregnancy , Sex Factors , Uric Acid/metabolism , Vascular Endothelial Growth Factor A/metabolism
9.
Int J Sport Nutr Exerc Metab ; 32(6): 425-438, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35894919

ABSTRACT

This study examines (a) the influence of exercise, lifestyle behavior components (sedentary time, physical activity, and sleep and dietary patterns), and physical fitness on maternal weight gain, postpartum weight retention, and excessive gestational weight gain and (b) whether exercise protects against the adverse effects of impaired metabolism and nonoptimal body composition related to excessive gestational weight gain. Subjects were assigned to either a supervised concurrent (aerobic + resistance) exercise program followed 3 days/week (n = 47) or a control group (n = 54). Sedentary time, physical activity, sleep and dietary patterns (assessed by accelerometry and questionnaires), muscle strength (handgrip test), and cardiorespiratory fitness (Bruce test) were determined at gestational Weeks 16 and 33 (early-middle and late pregnancy, respectively), and at 6 weeks postpartum. Weight gain and weight retention were calculated using recorded weights at prepregnancy, early-middle, and late pregnancy, and at 6 weeks postpartum. Birth complications, maternal postpartum body composition, cardiometabolic, and inflammatory markers in maternal and umbilical cord arterial and venous blood, and in colostrum, and mature milk were also recorded. The exercise intervention reduced late weight gain (B = -2.7, SE = 0.83, p = .003) and weight retention (B = -2.85, SE = 1.3, p = .03), independent of any lifestyle behavior component or physical fitness, but did not prevent excessive weight gain. Increasing cardiorespiratory fitness, muscle strength, and sleep duration were associated with a smaller mean weight gain and lower excessive weight gain values (p < .05). Among the participants who experienced excessive weight gain, those who were exercisers had a lower body mass index and systemic tumor necrosis factor-alpha concentration, lower umbilical cord venous tumor necrosis factor-alpha and arterial interferon gamma levels, higher cord arterial interleukin-10 levels, and improved placental function compared with controls (p < .05). In summary, exercise may help optimize gestational weight gain and weight retention, and may attenuate the impaired phenotype related to excessive weight gain. Increasing cardiorespiratory fitness, muscle strength, and sleep duration might help to prevent excessive weight gain during pregnancy.


Subject(s)
Gestational Weight Gain , Humans , Pregnancy , Female , Interleukin-10 , Tumor Necrosis Factor-alpha , Interferon-gamma , Hand Strength , Placenta , Weight Gain , Exercise/physiology , Body Mass Index , Physical Fitness , Overweight
10.
Front Mol Biosci ; 9: 834814, 2022.
Article in English | MEDLINE | ID: mdl-35359604

ABSTRACT

Protein kinase CK2 is a highly pleiotropic and ubiquitously expressed Ser/Thr kinase with instrumental roles in normal and pathological states, including neoplastic phenotype in solid tumor and hematological malignancies. In line with previous reports, CK2 has been suggested as an attractive prognostic marker and molecular target in acute myeloid leukemia (AML), a blood malignant disorder that remains as an unmet medical need. Accordingly, this work investigates the complex landscape of molecular and cellular perturbations supporting the antileukemic effect exerted by CK2 inhibition in AML cells. To identify and functionally characterize the proteomic profile differentially modulated by the CK2 peptide-based inhibitor CIGB-300, we carried out LC-MS/MS and bioinformatic analysis in human cell lines representing two differentiation stages and major AML subtypes. Using this approach, 109 and 129 proteins were identified as significantly modulated in HL-60 and OCI-AML3 cells, respectively. In both proteomic profiles, proteins related to apoptotic cell death, cell cycle progression, and transcriptional/translational processes appeared represented, in agreement with previous results showing the impact of CIGB-300 in AML cell proliferation and viability. Of note, a group of proteins involved in intracellular redox homeostasis was specifically identified in HL-60 cell-regulated proteome, and flow cytometric analysis also confirmed a differential effect of CIGB-300 over reactive oxygen species (ROS) production in AML cells. Thus, oxidative stress might play a relevant role on CIGB-300-induced apoptosis in HL-60 but not in OCI-AML3 cells. Importantly, these findings provide first-hand insights concerning the CIGB-300 antileukemic effect and draw attention to the existence of both common and tailored response patterns triggered by CK2 inhibition in different AML backgrounds, a phenomenon of particular relevance with regard to the pharmacologic blockade of CK2 and personalized medicine.

SELECTION OF CITATIONS
SEARCH DETAIL