ABSTRACT
PURPOSE: Whole brain irradiation (WBI) causes a variety of secondary side-effects including anorexia and bone necrosis. We evaluated the radiomodifying effect of black grape juice (BGJ) on WBI alterations in rats measuring food and water intake, body weight, hemogram, and morphological and histological mandibular parameters. MATERIALS AND METHODS: Forty male rats (200-250 g) were exposed to eight sessions of cranial X-ray irradiation. The total dose absorbed was 32 Gy delivered over 2 weeks. Four groups were defined: (i) NG: non-irradiated, glucose and fructose solution-supplemented (GFS); (ii) NJ: non-irradiated, BGJ-supplemented; (iii) RG: irradiated, GFS-supplemented; and (iv) RJ: irradiated, BGJ-supplemented. Rats received daily BGJ or GFS dosing by gavage starting 4 days before, continuing during, and ending 4 days after WBI. RESULTS: RJ rats ingested more food and water and showed less body weight loss than RG rats during the irradiation period. Forty days after WBI, irradiated animals started losing weight again compared with controls as a consequence of masticatory hypofunction by mandibular osteoradionecrosis (ORN). Osteoclastic activity and inflammation were apparent in RG rat mandibles. BGJ was able to attenuate the severity of ORN as well as to improve white and red blood cell counts. CONCLUSIONS: Fractionated whole brain irradiation induces mandibular changes that interfere with normal feeding. BGJ can be used to mitigate systemic side-effects of brain irradiation and ORN.
Subject(s)
Cranial Irradiation/adverse effects , Mandibular Diseases/prevention & control , Mandibular Diseases/physiopathology , Osteoradionecrosis/prevention & control , Osteoradionecrosis/physiopathology , Radiation-Protective Agents/administration & dosage , Vitis/chemistry , Animals , Fruit and Vegetable Juices , Male , Mandibular Diseases/etiology , Osteoradionecrosis/etiology , Rats , Rats, Wistar , Treatment OutcomeABSTRACT
Whole-body irradiation has been associated with liver function alterations. Ionizing radiation exposure increases oxidative stress and antioxidants can activate transcription of antioxidant target genes. In the present study, modifications of the liver antioxidant system were evaluated at 7 and 30 days following sub-lethal whole-body X-irradiation in male Wistar rats, which were intragastrically supplemented with quercetin or control solvent for 4 days prior to and 6 days following irradiation. Animal groups were as follows: CS, control, solvent-supplemented; CQ, control, quercetin-supplemented; RS, irradiated, solvent-supplemented; and RQ, irradiated, quercetin-supplemented. After 7 days, liver tissue from RS animals demonstrated marked hydropic panlobular degeneration with Mallory bodies in ballooning hepatocytes. These changes were mostly reversed in RQ rats. Lipid peroxidation in addition to copper/zinc superoxide dismutase (Cu/Zn-SOD), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) protein expression levels were all increased by X-irradiation, but significantly decreased by quercetin supplementation. Catalase (CAT) and NAD(P)H: quinone oxidoreductase 1 (NQO1) expression levels remained high in irradiated rats regardless of quercetin supplementation. After 30 days, the liver from RS animals had small portal infiltrates and diffuse cytoplasmic vacuolization, with reduced lipid peroxidation and reduced expression levels of CAT, NQO1, Nrf2 and Keap1, but consistently elevated Cu/Zn-SOD expression. RQ animals indicated reduced expression levels of Nrf2 and Keap1 30 days after irradiation. The present study demonstrated a quercetin-induced reduction of the oxidative stress-associated increase in Nrf2 expression that may be useful for preventing cancer cell survival in response to ionizing radiation exposure.