Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 11(2): 68, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33489685

ABSTRACT

ZnO nanoparticles (NPS) with different morphologies were synthesized, and the antibacterial and anticancer activity was studied, herein. The physicochemical characterization was carried out by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR) and UV-visible. To study the antibacterial and anticancer capability of ZnO NPS, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria and HeLa cancer cells were exposed at different doses of ZnO NPS (7-250 µg/mL). TEM analysis confirmed the obtention of spherical, hexagonal and rod ZnO NPS with an average diameter of 20 ± 4 nm, 1.17 ± 0.3 µm and 1.11 ± 1.2 µm, respectively. XRD diffractograms showed the characteristic pattern of crystalline ZnO in wurtzite phase. FTIR and UV-vis spectra showed slight differences of the main absorption peaks, revealing that different ZnO NPS morphologies may cause shifts in spectra. Biological essays showed that the number of E. coli and S. aureus bacteria as well as HeLa cells decreases linearly by increasing the nanoparticle concentration. However, the best anticancer and antibacterial activity was shown by spherical ZnO NPS at 100 µg/mL. The better capability of spherical ZnO NPS than hexagonal and rod ZnO NPS is related with its small particle size. The present results suggest that the spherical ZnO NPS has a great potential as an antibacterial and anticancer agent.

SELECTION OF CITATIONS
SEARCH DETAIL
...