Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
EBioMedicine ; 8: 291-301, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27428438

ABSTRACT

Despite being one of the first antitubercular agents identified, isoniazid (INH) is still the most prescribed drug for prophylaxis and tuberculosis (TB) treatment and, together with rifampicin, the pillars of current chemotherapy. A high percentage of isoniazid resistance is linked to mutations in the pro-drug activating enzyme KatG, so the discovery of direct inhibitors (DI) of the enoyl-ACP reductase (InhA) has been pursued by many groups leading to the identification of different enzyme inhibitors, active against Mycobacterium tuberculosis (Mtb), but with poor physicochemical properties to be considered as preclinical candidates. Here, we present a series of InhA DI active against multidrug (MDR) and extensively (XDR) drug-resistant clinical isolates as well as in TB murine models when orally dosed that can be a promising foundation for a future treatment.


Subject(s)
Antitubercular Agents/pharmacology , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Animals , Antitubercular Agents/chemistry , Binding Sites , Catalytic Domain , Disease Models, Animal , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/genetics , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism , Enzyme Inhibitors/chemistry , Female , Humans , Mice , Microbial Sensitivity Tests , Microsomes , Models, Molecular , Mutation , Mycobacterium tuberculosis/genetics , Protein Binding , Protein Conformation , Tuberculosis/drug therapy , Tuberculosis/microbiology , Tuberculosis/mortality , Tuberculosis, Multidrug-Resistant
SELECTION OF CITATIONS
SEARCH DETAIL
...