Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Polymers (Basel) ; 16(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38932013

ABSTRACT

Nanocellulose, a nanoscale derivative from renewable biomass sources, possesses remarkable colloidal properties in water, mechanical strength, and biocompatibility. It emerges as a promising bio-based dispersing agent for various nanomaterials in water. This mini-review explores the interaction between cellulose nanomaterials (nanocrystals or nanofibers) and water, elucidating how this may enable their potential as an eco-friendly dispersing agent. We explore the potential of nanocellulose derived from top-down processes, nanocrystals, and nanofibers for dispersing carbon nanomaterials, semiconducting oxide nanoparticles, and other nanomaterials in water. We also highlight its advantages over traditional methods by not only effectively dispersing those nanomaterials but also potentially eliminating the need for further chemical treatments or supporting stabilizers. This not only preserves the exceptional properties of nanomaterials in aqueous dispersion, but may even lead to the emergence of novel hybrid functionalities. Overall, this mini-review underscores the remarkable versatility of nanocellulose as a green dispersing agent for a variety of nanomaterials, inspiring further research to expand its potential to other nanomaterials and applications.

2.
Heliyon ; 10(1): e23969, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38259962

ABSTRACT

Surface treatments help to protect the built heritage against damage (environmental, accidental, etc.), reducing repair and restitution costs and increasing the useful life of building materials. The use of nanomaterials is currently the most important field of research in surface treatment technology for the preservation of building materials and, more specifically, to improve their durability and prevent their deterioration, extending their useful life. This paper studies the influence of a graphene oxide (GO) suspension as a surface treatment on the properties of concrete. The results indicate that, at best, surface treatment with GO can decrease both the water absorption and capillary absorption of concrete by about 15 %. The increase in the amount of GO deposited as a surface treatment leads to a further reduction in concrete water absorption. It is shown that, at best, GO coating also reduces water penetration at low and high pressures by approximately 20 % and 60 %, respectively. In addition, scanning electron microscopy analysis shows that GO surface treatment facilitates the hydration process and densifies the concrete microstructure. A simple aqueous suspension of GO is revealed as a tool with a high potential to protect concrete surfaces in a fast and cost-effective way, thanks to the easy application by spraying and the small amount of material needed to obtain great results.

3.
Int J Mol Sci ; 24(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37685947

ABSTRACT

Pickering emulsions (PEs) differ from conventional emulsions in the use of solid colloidal particles as stabilizing agents instead of traditional amphiphilic molecules. Nanostructured biopolymers (NBs) emerge as a promising alternative for PE stabilization owing to their remarkable biocompatibility, abundant availability, and low cost. To explore this potential, a study is herein presented, in which cellulose nanocrystals (CNCs), both type I and type II allomorphs, and chitin nanocrystals (ChNCs) were used for stabilizing oil-in-water PEs prepared by the use of ultrasound. Sunflower oil was selected as the oil phase as it offers the advantages of being edible, renewable, and inexpensive. By utilizing ζ-potential, static light diffraction, and visual observations, we determined the optimal oil/water ratio for each type of NB to obtain stable emulsions after 14 days. The optimized PEs were used to form bacterial nanocellulose composites through emulsion templating. To our knowledge, this study represents a pioneering work in exploiting oil-in-water PEs for this approach. Additionally, it entails the first utilization of nonmercerized type II CNCs as stabilizers for PEs, while also establishing a direct comparison among the most relevant NBs. The resulting composites exhibited a unique morphology, composed of larger pores compared to standard bacterial nanocellulose aerogels. These findings highlight the notable potential of NBs as stabilizers for PEs and their ability to generate green nanocomposites with tailored properties.


Subject(s)
Nanocomposites , Nanoparticles , Cellulose , Emulsions , Biopolymers
4.
Materials (Basel) ; 16(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37374414

ABSTRACT

The historical stone heritage that we inherit must be passed on to future generations, not only in the same conditions that we found it but, if possible, in better ones. Construction also demands better and more durable materials, often stone. The protection of these materials requires knowledge of the types of rocks and their physical properties. The characterization of these properties is often standardized to ensure the quality and reproducibility of the protocols. These must be approved by entities whose purpose is to improve the quality and competitiveness of companies and to protect the environment. Standardized water absorption tests could be envisaged to test the effectiveness of certain coatings in protecting natural stone against water penetration, but we found that some steps of these protocols neglect any surface modification of the stones, and hence may not be completely effective when a hydrophilic protective coating (i.e., graphene oxide) is present. In this work, we analyze the UNE 13755/2008 standard for water absorption and propose alternative steps to adapt the norm for use with coated stones. The properties of coated stones may invalidate the interpretation of the results if the standard protocol is applied as is, so here we pay special attention to the characteristics of the coating applied, the type of water used for the test, the materials used, and the intrinsic heterogeneity of the specimens.

5.
Materials (Basel) ; 16(12)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37374519

ABSTRACT

The transport properties of commercial carbon nanofibers (CNFs) produced by chemical vapor deposition (CVD) depend on the various conditions used during their growth and post-growth synthesis, which also affect their derivate CNF-based textile fabrics. Here, the production and thermoelectric (TE) properties of cotton woven fabrics (CWFs) functionalized with aqueous inks made from different amounts of pyrolytically stripped (PS) Pyrograf® III PR 25 PS XT CNFs via dip-coating method are presented. At 30 °C and depending on the CNF content used in the dispersions, the modified textiles show electrical conductivities (σ) varying between ~5 and 23 S m-1 with a constant negative Seebeck coefficient (S) of -1.1 µVK-1. Moreover, unlike the as-received CNFs, the functionalized textiles present an increase in their σ from 30 °C to 100 °C (dσ/dT > 0), explained by the 3D variable range hopping (VRH) model as the charge carriers going beyond an aleatory network of potential wells by thermally activated hopping. However, as it happens with the CNFs, the dip-coated textiles show an increment in their S with temperature (dS/dT > 0) successfully fitted with the model proposed for some doped multiwall carbon nanotube (MWCNT) mats. All these results are presented with the aim of discerning the authentic function of this type of pyrolytically stripped Pyrograf® III CNFs on the thermoelectric properties of their derived textiles.

6.
ACS Macro Lett ; 12(2): 152-158, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36638204

ABSTRACT

Cellulose nanocrystals (CNCs) have aroused increasing interest owing to their renewable origin and excellent properties derived from their size and morphology. Based on their chain orientation, CNCs can be prepared as two main allomorphs (I or II). However, achieving pure CNC allomorphs still requires enhanced control on the CNCs synthesis process and improved understanding of the involved reaction parameters. In this work, we study in detail a set of parameters for CNC synthesis using one-pot acid hydrolysis and evaluate their influence on the outcome with respect to yield, purity, and repeatability. We also demonstrate that a fast, nondestructive, and accurate methodology based on dynamic light scattering is an efficient alternative to the usual structural analysis of the synthesis outcome. Finally, we provide an improved protocol to reliably obtain each allomorph with mass yields of 25% for type I and 40% for type II. Emphasis is put on the reduction of the environmental impact and the overall preparation time.

7.
Nat Commun ; 13(1): 6872, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36369509

ABSTRACT

Explosive percolation is an experimentally-elusive phenomenon where network connectivity coincides with onset of an additional modification of the system; materials with correlated localisation of percolating particles and emergent conductive paths can realise sharp transitions and high conductivities characteristic of the explosively-grown network. Nanocomposites present a structurally- and chemically-varied playground to realise explosive percolation in practically-applicable systems but this is yet to be exploited by design. Herein, we demonstrate composites of graphene oxide and synthetic polymer latex which form segregated networks, leading to low percolation threshold and localisation of conductive pathways. In situ reduction of the graphene oxide at temperatures of <150 °C drives chemical modification of the polymer matrix to produce species with phenolic groups, which are known crosslinking agents. This leads to conductivities exceeding those of dense-packed networks of reduced graphene oxide, illustrating the potential of explosive percolation by design to realise low-loading composites with dramatically-enhanced electrical transport properties.

8.
Nanomaterials (Basel) ; 12(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35214931

ABSTRACT

Since the very first landmark report by Geim and Novoselov in 2004 on graphene [...].

9.
Mikrochim Acta ; 189(2): 62, 2022 01 14.
Article in English | MEDLINE | ID: mdl-35031873

ABSTRACT

Two cellulose nanocrystals/single-walled carbon nanotube (CNC/SW) hybrids, using two cellulose polymorphs, were evaluated as electrochemical transducers: CNC type I (CNC-I/SW) and CNC type II (CNC-II/SW). They were synthesized and fully characterized, and their analytical performance as electrochemical sensors was carefully studied. In comparison with SWCNT-based and screen-printed carbon electrodes, CNC/SW sensors showed superior electroanalytical performance in terms of sensitivity and selectivity, not only in the detection of small metabolites (uric acid, dopamine, and tyrosine) but also in the detection of complex glycoproteins (alpha-1-acid glycoprotein (AGP)). More importantly, CNC-II/SW exhibited 20 times higher sensitivity than CNC-I/SW for AGP determination, yielding a LOD of 7 mg L-1.These results demonstrate the critical role played by nanocellulose polymorphism in the electrochemical performance of CNC/SW hybrid materials, opening new directions in the electrochemical sensing of these complex molecules. In general, these high-active-surface hybrids smartly exploited the preserved non-oxidized SW conductivity with the high aqueous dispersibility of the CNC, avoiding the use of organic solvents or the incorporation of toxic surfactants during their processing, making the CNC/SW hybrids promising nanomaterials for electrochemical detection following greener approaches.


Subject(s)
Cellulose/chemistry , Electrochemical Techniques/methods , Nanotubes, Carbon/chemistry , Molecular Structure , Nanocomposites/chemistry
10.
Angew Chem Int Ed Engl ; 61(9): e202113286, 2022 02 21.
Article in English | MEDLINE | ID: mdl-34730273

ABSTRACT

Nanomaterials offer exciting properties and functionalities. However, their production and processing frequently involve complex methods, cumbersome equipment, harsh conditions, and hazardous media. The capability of organisms to accomplish this using mild conditions offers a sustainable, biocompatible, and environmentally friendly alternative. Different nanomaterials such as metal nanoparticles, quantum dots, silica nanostructures, and nanocellulose are being synthesized increasingly through living entities. In addition, the bionanofabrication potential enables also the in situ processing of nanomaterials inside biomatrices with unprecedented outcomes. In this Minireview we present a critical state-of-the-art vision of current nanofabrication approaches mediated by living entities (ranging from unicellular to higher organisms), in order to expand this knowledge and scrutinize future prospects. An efficient interfacial interaction at the nanoscale by green means is within reach through this approach.


Subject(s)
Bacteria/chemistry , Bombyx/chemistry , Nanostructures/chemistry , Animals
11.
Carbohydr Polym ; 269: 118332, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34294342

ABSTRACT

Chitin is mainly extracted from crustaceans, but this resource is seasonally dependent and can represent a major drawback to satisfy the traceability criterion for high valuable applications. Insect resources are valuable alternatives due to their lower mineral content. However, the deacetylation of chitin into chitosan is still an expensive process. Therefore, we herein compare the impact of both DES/IL-pretreatments on the efficiency of the chemical deacetylation of chitin carried out over two insect sources (Bombyx eri, BE and Hermetia illucens, HI) and shrimp shells (S). The results showed that chitosans obtained from IL-pretreated chitins from BE larva, present lower acetylation degrees (13-17%) than DES-pretreated samples (18-27%). A selective N-acylation reaction with oleic acid has also been performed on the purest and most deacetylated chitosans leading to high substitution degrees (up to 27%). The overall approach validates the proper chitin source and processing methodology to achieve high quality and highly functionalizable chitosan.

12.
Nurse Educ Today ; 106: 105062, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34304100

ABSTRACT

INTRODUCTION: In recent years, innovative educational strategies of learning have appeared, to generate greater motivation in the students. Gamification has become popular in the educational area, including Escape Rooms. The primary aim of the study was to evaluate if this gamification activity led to better knowledge acquisition by the students, improving performance in their final exam. As a secondary objective, we surveyed the satisfaction of the students participating in the Educational Escape Room. MATERIAL AND METHODS: An observational study of cases and controls was carried out. We designed an escape room based on the cardiovascular area of physiotherapy, titled Escape-Cardio. We provided scaffolded learning activities through the activity. Primary outcomes corresponded to the students' qualifications and the number of correct answers in the final exam. Qualitative questionnaire results of students of both courses were collected using a self-created survey, which was completed after the activity. RESULTS: 58 students participated in the Escape-Cardio. We observed better performance in the intervention group, improving their average mark and number of correct answers in the exam, with a statistically significant difference compared to the control group (p-value<0.05). In the qualitative assessment, students answered the survey, and all of them scored unanimously each item with the maximum score, aiming for 100% satisfaction. CONCLUSION: Escape-Cardio students improved their professional knowledge application in the cardiovascular physiotherapy area in a statistically significant way. An excellent qualitative evaluation was achieved by them.


Subject(s)
Learning , Motivation , Humans , Physical Therapy Modalities , Students , Surveys and Questionnaires
13.
Nanomaterials (Basel) ; 11(6)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072356

ABSTRACT

In the vast field of conductive inks, graphene-based nanomaterials, including chemical derivatives such as graphene oxide as well as carbon nanotubes, offer important advantages as per their excellent physical properties. However, inks filled with carbon nanostructures are usually based on toxic and contaminating organic solvents or surfactants, posing serious health and environmental risks. Water is the most desirable medium for any envisioned application, thus, in this context, nanocellulose, an emerging nanomaterial, enables the dispersion of carbon nanomaterials in aqueous media within a sustainable and environmentally friendly scenario. In this work, we present the development of water-based inks made of a ternary system (graphene oxide, carbon nanotubes and nanocellulose) employing an autoclave method. Upon controlling the experimental variables, low-viscosity inks, high-viscosity pastes or self-standing hydrogels can be obtained in a tailored way. The resulting inks and pastes are further processed by spray- or rod-coating technologies into conductive films, and the hydrogels can be turned into aerogels by freeze-drying. The film properties, with respect to electrical surface resistance, surface morphology and robustness, present favorable opportunities as metal-free conductive layers in liquid-phase processed electronic device structures.

14.
ACS Biomater Sci Eng ; 6(2): 1269-1278, 2020 02 10.
Article in English | MEDLINE | ID: mdl-33464834

ABSTRACT

Three-dimensional (3D) scaffolds with tailored stiffness, porosity, and conductive properties are particularly important in tissue engineering for electroactive cell attachment, proliferation, and vascularization. Carbon nanotubes (CNTs) and poly(3,4-ethylenedioxythiophene) (PEDOT) have been extensively used separately as neural interfaces showing excellent results. Herein, we combine both the materials and manufacture 3D structures composed exclusively of PEDOT and CNTs using a methodology based on vapor phase polymerization of PEDOT onto a CNT/sucrose template. Such a strategy presents versatility to produce porous scaffolds, after leaching out the sucrose grains, with different ratios of polymer/CNTs, and controllable and tunable electrical and mechanical properties. The resulting 3D structures show Young's modulus typical of soft materials (20-50 kPa), as well as high electrical conductivity, which may play an important role in electroactive cell growth. The conductive PEDOT/CNT porous scaffolds present high biocompatibility after 3 and 6 days of C8-D1A astrocyte incubation.


Subject(s)
Nanotubes, Carbon , Tissue Engineering , Bridged Bicyclo Compounds, Heterocyclic , Polymerization , Polymers , Tissue Scaffolds
15.
Biomacromolecules ; 20(8): 3147-3160, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31251612

ABSTRACT

Nanocellulose is increasingly being investigated as a paradigm of a sustainable nanomaterial because of its extraordinary physical and chemical properties, together with its renewable nature and worldwide abundance. The rich structural diversity of cellulose materials is represented by different crystalline allomorphs, from which types I and II stand out. While type I is naturally and ubiquitously present, type II is man-made and requires harsh and caustic synthesis conditions such as the so-called mercerization process. Here, we provide an optimal scenario to obtain either type-I or II nanocrystalline cellulose (NCC) by a mercerization-free method consisting only of the acid hydrolysis commonly used to produce nanocellulose from microcellulose. The possibility of having nonmercerized type-II NCC acquires a great relevance since this nanostructure shows particularly appealing properties. Moreover, an entangled and wrapped system arises when used as a dispersing agent for single-walled carbon nanotubes (SWCNTs), significantly different from that of type I. The biological testing of each NCC type and their respective SWCNT-NCC dispersions in human intestinal (Caco-2) cells reveals a general innocuous behavior in both cancer and normal stages of differentiation; however, the type-II-based SWCNT-NCC dispersions display cytotoxicity for cancer cells while enhancing mitochondrial metabolism of normal cells.


Subject(s)
Biocompatible Materials/chemistry , Cell Differentiation , Cell Survival , Cellulose/chemistry , Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Caco-2 Cells , Humans
16.
Phys Chem Chem Phys ; 21(7): 4063-4071, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30714592

ABSTRACT

The effect of doping on the electronic properties in bulk single-walled carbon nanotube (SWCNT) samples is studied for the first time using a new in situ Raman spectroelectrochemical method, and further verified by DFT calculations and photoresponse. We use p-/n-doped SWCNTs prepared by diazonium reactions as a versatile chemical strategy to control the SWCNT behavior. The measured and calculated data testify an acceptor effect of 4-aminobenzenesulfonic acid (p-doping), and a donor effect (n-doping) in the case of benzyl alcohol. In addition, pristine and covalently functionalized SWCNTs were used for the preparation of photoactive film electrodes. The photocathodic current in the photoelectrochemical cell is consistently modulated by the doping group. These results validate the in situ Raman spectroelectrochemistry as a unique tool box for predicting the electronic properties of functionalized SWCNTs in the form of thin films and their operational functionality in thin film devices for future optoelectronic applications.

17.
Polymers (Basel) ; 11(12)2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31888277

ABSTRACT

This paper presents a methodology for manufacturing nanocomposites from an epoxy resin reinforced with graphene oxide (GO) nanoparticles. A scalable and sustainable fabrication process, based on a solvent-free method, is proposed with the objective of achieving a high level of GO dispersion, while maintaining matrix performance. The results of three-point bending tests are examined by means of an analytical technique which allows determining the mechanical response of the material under tension and compression from flexural data. As result, an increase of 39% in the compressive elastic modulus of the nanocomposite is found with the addition of 0.3 wt % GO. In parallel, we described how the strain distribution and the failure modes vary with the amount of reinforcement based on digital image correlation (DIC) techniques and scanning electron microscopy (SEM). A novel analytical model, capable of predicting the influence of GO content on the elastic properties of the material, is obtained. Numerical simulations considering the experimental conditions are carried out. the full strain field given by the DIC system is successfully reproduced by means of the finite element method (FEM). While, the experimental failure is explained by the crack growth simulations using the eXtended finite element method (XFEM).

18.
Chempluschem ; 84(7): 862-871, 2019 07.
Article in English | MEDLINE | ID: mdl-31943979

ABSTRACT

Graphene oxide nanoribbons (GONRs), obtained from the oxidative unzipping of carbon nanotubes, have been investigated as building blocks towards reaching active platforms in surface-enhanced Raman scattering (SERS). The complete development of carbon nanomaterials is strongly related to the exploitation of their chemical versatility, so this work is focused on the positive effect that a specific chemical functionalization provides to the SERS effect when gold nanoparticles are used. The covalent derivatization of GONRs with terminal thiol groups boosts their interaction with different types of gold nanoparticles (namely, 'naked' or citrate-stabilized), and the resulting two-dimensional aggregates show an intense enhancement of the Raman scattering from the carbon nanostructures because of their two-dimensional extended aggregation pattern. The SERS effect has been corroborated by theoretical calculations and a conceptual proof of SERS-based sensing.

19.
ACS Appl Mater Interfaces ; 10(50): 43904-43914, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30475577

ABSTRACT

Three-dimensional scaffolds for cellular organization need to enjoy a series of specific properties. On the one hand, the morphology, shape and porosity are critical parameters and eventually related with the mechanical properties. On the other hand, electrical conductivity is an important asset when dealing with electroactive cells, so it is a desirable property even if the conductivity values are not particularly high. Here, we construct three-dimensional (3D) porous and conductive composites, where C8-D1A astrocytic cells were incubated to study their biocompatibility. The manufactured scaffolds are composed exclusively of carbon nanotubes (CNTs), a most promising material to interface with neuronal tissue, and polypyrrole (PPy), a conjugated polymer demonstrated to reduce gliosis, improve adaptability, and increase charge-transfer efficiency in brain-machine interfaces. We developed a new and easy strategy, based on the vapor phase polymerization (VPP) technique, where the monomer vapor is polymerized inside a sucrose sacrificial template containing CNT and an oxidizing agent. After removing the sucrose template, a 3D porous scaffold was obtained and its physical, chemical, and electrical properties were evaluated. The obtained scaffold showed very low density, high and homogeneous porosity, electrical conductivity, and Young's Modulus similar to the in vivo tissue. Its high biocompatibility was demonstrated even after 6 days of incubation, thus paving the way for the development of new conductive 3D scaffolds potentially useful in the field of electroactive tissues.


Subject(s)
Astrocytes/metabolism , Biocompatible Materials/chemistry , Nanotubes, Carbon/chemistry , Neural Prostheses , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Astrocytes/cytology , Cell Line , Mice , Porosity
20.
Nanoscale ; 10(24): 11604-11615, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29892760

ABSTRACT

Graphene-related materials (GRMs) such as graphene oxide (GO) and few-layer graphene (FLG) are used in multiple biomedical applications; however, there is still insufficient information available regarding their interactions with the main biological barriers such as skin. In this study, we explored the effects of GO and FLG on HaCaTs human skin keratinocytes, using NMR-based metabolomics and fluorescence microscopy to evaluate the global impact of each GRM on cell fate and damage. GO and FLG at low concentrations (5 µg mL-1) induced a differential remodeling of the metabolome, preceded by an increase in the level of radical oxygen species (ROS) and free cytosolic Ca2+. These changes are linked to a concentration-dependent increase in cell death by triggering apoptosis and necrosis, the latter being predominant at higher concentrations of the nanostructures. In addition, both compounds reduce the ability of HaCaT cells to heal wounds. Our results demonstrate that the GO and FLG used in this study, which mainly differ in their oxidation state, slightly trigger differential effects on HaCaTs cells, but with evident outcomes at the cellular and molecular levels. Their behavior as pro-apoptotic/necrotic substances and their ability to inhibit cell migration, even at low doses, should be considered in the development of future applications.


Subject(s)
Graphite/pharmacology , Keratinocytes/drug effects , Nanostructures , Apoptosis , Cell Line , Filaggrin Proteins , Humans , Oxides , Reactive Oxygen Species , Skin/cytology , Skin/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...