Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochimie ; 216: 46-55, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37879428

ABSTRACT

Mycobacteria are microorganisms distributed in the environment worldwide, and some of them, such as Mycobacterium tuberculosis or M. leprae, are pathogenic. The hydrophobic mycobacterial cell envelope has low permeation and bacteria need to export products across their structure. Mycobacteria possess specialized protein secretion systems, such as the Early Secretory Antigenic Target 6 secretion (ESX) system. Five ESX loci have been described in M. tuberculosis, called ESX-1 to ESX-5. The ESX-3 secretion system has been associated with mycobacterial metabolism and growth. The locus of this system is highly conserved across mycobacterial species. Metallo-proteins regulate negative ESX-3 transcription in high conditions of iron and zinc. Moreover, this secretion system is part of an antioxidant regulatory pathway linked to Zinc. EccA3, EccB3, EccC3, EccD3, and EccE3 are components of the ESX-3 secretion machinery, whereas EsxG-EsxH, PE5-PPE4, and PE15-PPE20 are proteins secreted by this system. In addition, EspG3 and MycP3 are complementary proteins involved in transport and proteolysis respectively. This system is associated to mycobacterial virulence by releasing the bacteria from the phagosome and inhibiting endomembrane damage response. Furthermore, components of this system inhibit the host immune response by reducing the recognition of M. tuberculosis-infected cells. The components of the ESX-3 secretion system play a role in drug resistance and cell wall integrity. Moreover, the expression data of this system indicated that external and internal factors affect ESX-3 locus expression. This review provides an overview of new findings on the ESX-3 secretion system, its regulation, expression, and functions.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Type VII Secretion Systems , Humans , Type VII Secretion Systems/genetics , Type VII Secretion Systems/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mycobacterium tuberculosis/metabolism , Zinc/metabolism
2.
J Clin Med ; 12(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37048758

ABSTRACT

People with comorbidities and the male sex are at a higher risk of developing severe COVID-19. In the present study, we aim to investigate the associated factors for infection, severity, and death due to COVID-19 in a population from Nuevo León, México. Epidemiological COVID-19 data were collected from 65 hospitals from December 2020 to May 2022. A total of 75,232 cases were compiled from which 25,722 cases were positive for SARS-CoV-2. Male sex, older age, diabetes, obesity, and hypertension were associated with infection. In addition to the above-mentioned factors, renal disease, cardiovascular disease, and immunosuppression were found to be associated with increased COVID-19 severity. These factors, as well as neurological diseases, are also associated with death due to COVID-19. When comparing the different variants of SARs-CoV-2, the variant B1.1.519 increased the probability of death by 2.23 times compared to the AY.20 variant. Male sex, older age, diabetes, obesity, and hypertension are associated with SARS-CoV-2 infection, severity, and death. Along with the aforementioned comorbidities, renal disease, cardiovascular disease, and immunosuppression are also associated with severity and death. Another factor associated with death is the presence of neurological disease. The SARS-CoV-2 B1.1.519 variant increases the odds of death compared to the SARS-CoV-2 AY.20 variant.

3.
Front Microbiol ; 12: 742867, 2021.
Article in English | MEDLINE | ID: mdl-34803964

ABSTRACT

The emergence of multidrug-resistant (MDR) Mycobacterium tuberculosis strains threaten the control of tuberculosis. New antitubercular dihydrosphingosine analogs, named UCIs, have been evaluated in preclinical studies but their cellular and molecular mechanisms of action against M. tuberculosis are still unknown. The aim of this study was to evaluate the effect of UCI exposure on gene expression of drug-sensitive H37Rv and MDR CIBIN:UMF:15:99 clones of M. tuberculosis which were isolated, phenotypically, and genetically characterized, cultured to log phase and treated with UCI compounds; followed by total RNA isolation, reverse transcription and hybridization assays on Affymetrix genomic microarrays. Data were validated with RT-qPCR assays. As results, UCI-05 and UCI-14 exposure increased gltA1 expression in drug-sensitive H37Rv clones. Furthermore, UCI-05 increased lprQ expression in MDR CIBIN:UMF:15:99 M. tuberculosis clones while UCI-14 reduced the expression of this gene in drug-sensitive H37Rv clones. In addition, UCI-05 reduced rpsO expression in drug-sensitive H37Rv clones. We found gene expression alterations that suggest these molecules may alter carbon and lipid metabolism as well as interfere in the protein-producing machinery in M. tuberculosis.

4.
Microb Drug Resist ; 26(11): 1279-1290, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32379526

ABSTRACT

Tuberculosis drug resistance (DR) is a global problem that is not fully elucidated. Previously, overexpression of esxG and esxH genes was reported in a multidrug-resistant (MDR) Mycobacterium tuberculosis isolate compared with a reference H37Rv strain. To evaluate the roles of esxG and esxH in DR, analysis of their regulatory and coding sequences in sensitive and resistant strains was performed, and the expression levels of their transcriptional regulators IdeR, Zur, and MntR were evaluated. esxG and esxH were expressed heterologously using mycobacterial constructs, and the orthologs Msmeg_0620 and Msmeg_0621 were attenuated in Mycobacterium smegmatis by antisense knockdown. We found no differences in the regulatory and coding sequences of esxG and esxH between the sensitive strain and the MDR isolate. Expression analysis of transcriptional regulators showed that ideR was upregulated in isoniazid (INH)-resistant isolates; in addition, growth inhibition of the M. smegmatis strain was observed in the presence of rifampicin (RIF) and INH when esxG and esxH were expressed heterologously, while faster growth in the presence of RIF was observed when the orthologs were attenuated. In conclusion, the expression of esxG and esxH altered the growth of Mycobacterium in the presence of INH and RIF, suggesting a potential association with DR.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/genetics , Genes, Bacterial/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Humans , Isoniazid/pharmacology , Microbial Sensitivity Tests/methods , Rifampin/pharmacology
5.
BMC Microbiol ; 20(1): 132, 2020 05 25.
Article in English | MEDLINE | ID: mdl-32450809

ABSTRACT

BACKGROUND: Mortality due to tuberculosis (TB) has increased due to the development of drug resistance, the mechanisms of which have not been fully elucidated. Our research group identified a low expression of lipF gene in Mycobacterium tuberculosis clinical isolates with drug resistance. The aim of this work was to evaluate the effect of lipase F (LipF) expression on mycobacterial drug resistance. RESULTS: The effects of expressing lipF from Mycobacterium tuberculosis in Mycobacterium smegmatis on resistance to antituberculosis drugs were determined with resazurin microtiter assay plate and growth kinetics. Functionality of ectopic LipF was confirmed. LipF expression reduced the rifampicin (RIF) and streptomycin (STR) minimum inhibitory concentration (MIC) from 3.12 µg/mL to 1.6 µg/mL and 0.25 µg/mL to 0.06 µg/mL respectively, moreover a reduced M. smegmatis growth in presence of RIF and STR compared with that of a control strain without LipF expression (p < 0.05 and p < 0.01) was shown. CONCLUSIONS: LipF expression was associated with increased RIF and STR sensitivity in mycobacteria. Reduced LipF expression may contribute to the development of RIF and STR resistance in Mycobacterium species. Our findings provide information pertinent to understanding mycobacterial drug resistance mechanisms.


Subject(s)
Drug Resistance, Multiple, Bacterial , Lipase/genetics , Mycobacterium tuberculosis/enzymology , Rifampin/pharmacology , Streptomycin/pharmacology , Bacterial Proteins/genetics , Cloning, Molecular , Down-Regulation , Gene Expression Regulation, Bacterial/drug effects , Microbial Sensitivity Tests , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/growth & development , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...