Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 13(11)2022 11 05.
Article in English | MEDLINE | ID: mdl-36360278

ABSTRACT

(1) Introduction: Lucina pectinata is a clam found in sulfide-rich mud environments that has three hemoglobins believed to be responsible for the transport of hydrogen sulfide (HbILp) and oxygen (HbIILp and HbIIILp) to chemoautotrophic endosymbionts. The physiological roles and evolution of these globins in sulfide-rich environments are not well understood. (2) Methods: We performed bioinformatic and phylogenetic analyses with 32 homologous mollusk globin sequences. Phylogenetics suggests a first gene duplication resulting in sulfide binding and oxygen binding genes. A more recent gene duplication gave rise to the two oxygen-binding hemoglobins. Multidimensional scaling analysis of the sequence space shows evolutionary drift of HbIILp and HbIIILp, while HbILp was closer to the Calyptogena hemoglobins. Further corroboration is seen by conservation in the coding region of hemoglobins from L. pectinata compared to those from Calyptogena. (3) Conclusions: Presence of glutamine in position E7 in organisms living in sulfide-rich environments can be considered an adaptation to prevent loss of protein function. In HbILp a substitution of phenylalanine in position B10 is accountable for its unique reactivity towards H2S. It appears that HbILp has been changing over time, apparently not subject to functional constraints of binding oxygen, and acquired a unique function for a specialized environment.


Subject(s)
Bivalvia , Computational Biology , Animals , Phylogeny , Amino Acid Sequence , Hemoglobins/genetics , Hemoglobins/metabolism , Bivalvia/genetics , Bivalvia/metabolism , Evolution, Molecular , Sulfides , Oxygen/metabolism
2.
BMC Microbiol ; 19(1): 262, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31771508

ABSTRACT

Following the publication of this article [1], it was brought to our attention that Fig. 7A lane 2 is identical to Fig. 7B lane 2 and Fig. 7B lane 4 is identical to Fig. 7C lane 4.

3.
Article in English | MEDLINE | ID: mdl-30279399

ABSTRACT

Lucina pectinata is a clam that lives in sulfide-rich environments and houses intracellular sulfide-oxidizing endosymbionts. To identify new Lucina pectinata proteins, we produced libraries for genome and transcriptome sequencing and assembled them de novo. We searched for histone-like sequences using the Lucina pectinata histone H3 partial nucleotide sequence against our previously described genome assembly to obtain the complete coding region and identify H3 coding sequences from mollusk sequences in Genbank. Solen marginatus histone nucleotide sequences were used as query sequences using the genome and transcriptome assemblies to identify the Lucina pectinata H1, H2A, H2B and H4 genes and mRNAs and obtained the complete coding regions of the five histone genes by RT-PCR combined with automated Sanger DNA sequencing. The amino acid sequence conservation between the Lucina pectinata and Solen marginatus histones was: 77%, 93%, 83%, 96% and 97% for H1, H2A, H2B, H3 and H4, respectively. As expected, the H3 and H4 proteins were the most conserved and the H1 proteins were most similar to H1's from aquatic organisms like Crassostrea gigas, Aplysia californica, Mytilus trossulus and Biomphalaria glabrata. The Lucina pectinata draft genome and transcriptome assemblies, obtained by semiconductor sequencing, were adequate for identification of conserved proteins as evidenced by our results for the histone genes.


Subject(s)
Bivalvia/genetics , Evolution, Molecular , Histones/genetics , Amino Acid Sequence , Animals , Base Sequence , Conserved Sequence , Exons , Extreme Environments , Phylogeny , Puerto Rico , RNA, Messenger/genetics , Sequence Analysis, DNA , Wetlands
4.
J Inorg Biochem ; 186: 176-186, 2018 09.
Article in English | MEDLINE | ID: mdl-29957454

ABSTRACT

A water-soluble octanuclear cluster, [Fe8], was studied with regard to its properties as a potential contrast enhancing agent in magnetic resonance imaging (MRI) in magnetic fields of 1.3, 7.2 and 11.9 T and was shown to have transverse relaxivities r2 = 4.01, 10.09 and 15.83 mM s-1, respectively. A related hydrophobic [Fe8] cluster conjugated with 5 kDa hyaluronic acid (HA) was characterized by 57Fe-Mössbauer and MALDI-TOF mass spectroscopy, and was evaluated in aqueous solutions in vitro with regard to its contrast enhancing properties [r2 = 3.65 mM s-1 (1.3 T), 26.20 mM s-1 (7.2 T) and 52.18 mM s-1 (11.9 T)], its in vitro cellular cytotoxicity towards A-549 cells and COS-7 cells and its in vivo enhancement of T2-weighted images (4.7 T) of a human breast cancer xenografted on a nude mouse. The physiologically compatible [Fe8]-HA conjugate was i.v. injected to the tumor-bearing mouse, resulting in observable, heterogeneous signal change within the tumor, evident 15 min after injection and persisting for approximately 30 min. Both molecular [Fe8] and its HA-conjugate show a strong magnetic field dependence on r2, rendering them promising platforms for the further development of T2 MRI contrast agents in high and ultrahigh magnetic fields.


Subject(s)
Breast Neoplasms/diagnostic imaging , Contrast Media , Iron , Magnetic Resonance Imaging , Organometallic Compounds , A549 Cells , Animals , Breast Neoplasms/metabolism , COS Cells , Chlorocebus aethiops , Contrast Media/chemical synthesis , Contrast Media/chemistry , Contrast Media/pharmacology , Female , Heterografts , Humans , Iron/chemistry , Iron/pharmacology , Mice , Mice, Nude , Neoplasm Transplantation , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology
5.
Int Arch Allergy Immunol ; 175(3): 147-159, 2018.
Article in English | MEDLINE | ID: mdl-29402803

ABSTRACT

BACKGROUND: Aspergillus penicillioides is a very common indoor xerophilic fungus and potential causative agent of respiratory conditions. Although people are constantly exposed to A. penicillioides, no proteins with allergenic potential have been described. Therefore, we aim to confirm allergic sensitization to A. penicillioides through reactivity in serological assays and detect immunoglobulin E (IgE)-binding proteins. METHODS: In an indirect ELISA, we compared the serological reactivity to A. penicillioides between subjects with specific IgE (sIgE) (group 1, n = 54) and no sIgE reactivity (group 2, n = 15) against commercial allergens. Correlations and principal component analysis were performed to identify associations between reactivity to commercial allergens and A. penicillioides. IgE-binding proteins in A. penicillioides were visualized using Western blotting (WB) in group 1. The IgE-binding proteins with the highest reactivity were analyzed by mass spectrometry and confirmed by transcript matching. RESULTS: There was no statistical significance (p = 0.1656) between the study groups in serological reactivity. Correlations between reactivity to A. penicillioides, dog epithelia, Aspergillus fumigatus, and Penicillium chrysogenum were observed. WB experiments showed 6 IgE-binding proteins with molecular weights ranging from 45 to 145 kDa. Proteins of 108, 83, and 56 kDa showed higher reactivity. Mass spectrometry analysis of these 3 proteins led to the putative identification of NADP-specific glutamate dehydrogenase and catalase B. This was confirmed with transcriptome analysis. CONCLUSIONS: These results provide evidence of the presence of potential allergenic components in A. penicillioides. Further analysis of the putatively identified proteins should reveal their allergenic potential.


Subject(s)
Allergens/immunology , Antibodies, Fungal/immunology , Antigens, Fungal/immunology , Aspergillus/immunology , Immunoglobulin E/immunology , Blotting, Western , Carrier Proteins , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Humans , Mass Spectrometry , Pilot Projects , Principal Component Analysis
7.
Genome Announc ; 4(4)2016 Aug 18.
Article in English | MEDLINE | ID: mdl-27540056

ABSTRACT

We report here the draft genome sequence of Acinetobacter baumannii strain M3AC14-8, sequence type 2 (ST2), carrying a chromosomally carried blaKPC-2 gene. The draft genome consists of a total length of 4.11 Mbp and a G+C content of 39.25%.

8.
PLoS One ; 11(8): e0161029, 2016.
Article in English | MEDLINE | ID: mdl-27556926

ABSTRACT

Twist proteins belong to the basic helix-loop-helix (bHLH) family of multifunctional transcriptional factors. These factors are known to use domains other than the common bHLH in protein-protein interactions. There has been much work characterizing the bHLH domain and the C-terminus in protein-protein interactions but despite a few attempts more focus is needed at the N-terminus. Since the region of highest diversity in Twist proteins is the N-terminus, we analyzed the conservation of this region in different vertebrate Twist proteins and study the sequence differences between Twist1 and Twist2 with emphasis on the glycine-rich regions found in Twist1. We found a highly conserved sequence motif in all Twist1 (SSSPVSPADDSLSNSEEE) and Twist2 (SSSPVSPVDSLGTSEEE) mammalian species with unknown function. Through sequence comparison we demonstrate that the Twist protein family ancestor was "Twist2-like" and the two glycine-rich regions found in Twist1 sequences were acquired late in evolution, apparently not at the same time. The second glycine-rich region started developing first in the fish vertebrate group, while the first glycine region arose afterwards within the reptiles. Disordered domain and secondary structure predictions showed that the amino acid sequence and disorder feature found at the N-terminus is highly evolutionary conserved and could be a functional site that interacts with other proteins. Detailed examination of the glycine-rich regions in the N-terminus of Twist1 demonstrate that the first region is completely aliphatic while the second region contains some polar residues that could be subject to post-translational modification. Phylogenetic and sequence space analysis showed that the Twist1 subfamily is the result of a gene duplication during Twist2 vertebrate fish evolution, and has undergone more evolutionary drift than Twist2. We identified a new signature motif that is characteristic of each Twist paralog and identified important residues within this motif that can be used to distinguish between these two paralogs, which will help reduce Twist1 and Twist2 sequence annotation errors in public databases.

9.
Free Radic Biol Med ; 95: 43-54, 2016 06.
Article in English | MEDLINE | ID: mdl-26952808

ABSTRACT

Plasmodium parasites are exposed to endogenous and exogenous oxidative stress during their complex life cycle. To minimize oxidative damage, the parasites use glutathione (GSH) and thioredoxin (Trx) as primary antioxidants. We previously showed that disruption of the Plasmodium berghei gamma-glutamylcysteine synthetase (pbggcs-ko) or the glutathione reductase (pbgr-ko) genes resulted in a significant reduction of GSH in intraerythrocytic stages, and a defect in growth in the pbggcs-ko parasites. In this report, time course experiments of parasite intraerythrocytic development and morphological studies showed a growth delay during the ring to schizont progression. Morphological analysis shows a significant reduction in size (diameter) of trophozoites and schizonts with increased number of cytoplasmic vacuoles in the pbggcs-ko parasites in comparison to the wild type (WT). Furthermore, the pbggcs-ko mutants exhibited an impaired response to oxidative stress and increased levels of nuclear DNA (nDNA) damage. Reduced GSH levels did not result in mitochondrial DNA (mtDNA) damage or protein carbonylations in neither pbggcs-ko nor pbgr-ko parasites. In addition, the pbggcs-ko mutant parasites showed an increase in mRNA expression of genes involved in oxidative stress detoxification and DNA synthesis, suggesting a potential compensatory mechanism to allow for parasite proliferation. These results reveal that low GSH levels affect parasite development through the impairment of oxidative stress reduction systems and damage to the nDNA. Our studies provide new insights into the role of the GSH antioxidant system in the intraerythrocytic development of Plasmodium parasites, with potential translation into novel pharmacological interventions.


Subject(s)
Glutamate-Cysteine Ligase/genetics , Glutathione Reductase/genetics , Glutathione/metabolism , Malaria/parasitology , Plasmodium berghei/genetics , Animals , Antioxidants/metabolism , Cell Nucleus/genetics , DNA Damage/genetics , DNA, Mitochondrial/genetics , Gene Knockout Techniques , Glutathione/deficiency , Life Cycle Stages/genetics , Malaria/drug therapy , Malaria/genetics , Oxidative Stress/genetics , Plasmodium berghei/growth & development , Plasmodium berghei/pathogenicity , Thioredoxins/genetics , Thioredoxins/metabolism
10.
Genome Announc ; 3(2)2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25858845

ABSTRACT

We report the draft genome of a multidrug resistant, Klebsiella pneumoniae carbapenemase (KPC)-producing Acinetobacter baumannii strain M3AC9-7 that belongs to the novel sequence type, ST250. The draft genome consists of a total length of 4.09 Mbp and a G+C content of 38.95%.

11.
BMC Microbiol ; 12: 194, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22958375

ABSTRACT

BACKGROUND: Adaptive responses in fungi result from the interaction of membrane receptors and extracellular ligands. Many different classes of receptors have been described in eukaryotic cells. Recently a new family of receptors classified as belonging to the progesterone-adiponectin receptor (PAQR) family has been identified. These receptors have the seven transmembrane domains characteristic of G-protein coupled receptors, but their activity has not been associated directly to G proteins. They share sequence similarity to the eubacterial hemolysin III proteins. RESULTS: A new receptor, SsPAQR1 (Sporothrix schenckii progesterone-adiponectinQ receptor1), was identified as interacting with Sporothrix schenckii G protein alpha subunit SSG-2 in a yeast two-hybrid assay. The receptor was identified as a member of the PAQR family. The cDNA sequence revealed a predicted ORF of 1542 bp encoding a 514 amino acids protein with a calculated molecular weight of 57.8 kDa. Protein domain analysis of SsPAQR1 showed the 7 transmembrane domains (TM) characteristic of G protein coupled receptors and the presence of the distinctive motifs that characterize PAQRs. A yeast-based assay specific for PAQRs identified progesterone as the agonist. S. schenckii yeast cells exposed to progesterone (0.50 mM) showed an increase in intracellular levels of 3', 5' cyclic adenosine monophosphate (cAMP) within the first min of incubation with the hormone. Different progesterone concentrations were tested for their effect on the growth of the fungus. Cultures incubated at 35°C did not grow at concentrations of progesterone of 0.05 mM or higher. Cultures incubated at 25°C grew at all concentrations tested (0.01 mM-0.50 mM) with growth decreasing gradually with the increase in progesterone concentration. CONCLUSION: This work describes a receptor associated with a G protein alpha subunit in S. schenckii belonging to the PAQR family. Progesterone was identified as the ligand. Exposure to progesterone increased the levels of cAMP in fungal yeast cells within the first min of incubation suggesting the connection of this receptor to the cAMP signalling pathway. Progesterone inhibited the growth of both the yeast and mycelium forms of the fungus, with the yeast form being the most affected by the hormone.


Subject(s)
Progesterone/metabolism , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Sporothrix/genetics , Sporothrix/metabolism , Amino Acid Sequence , Base Sequence , Cyclic AMP/metabolism , DNA, Complementary/genetics , DNA, Fungal/genetics , Models, Molecular , Molecular Sequence Data , Molecular Weight , Mycelium/drug effects , Mycelium/growth & development , Open Reading Frames , Protein Binding , Protein Structure, Tertiary , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Progesterone/agonists , Receptors, Progesterone/chemistry , Signal Transduction , Sporothrix/drug effects , Sporothrix/growth & development , Temperature , Two-Hybrid System Techniques
12.
BMC Microbiol ; 11: 162, 2011 Jul 11.
Article in English | MEDLINE | ID: mdl-21745372

ABSTRACT

BACKGROUND: Sporothrix schenckii is a pathogenic dimorphic fungus of worldwide distribution. It grows in the saprophytic form with hyaline, regularly septated hyphae and pyriform conidia at 25°C and as the yeast or parasitic form at 35°C. Previously, we characterized a calcium/calmodulin kinase in this fungus. Inhibitors of this kinase were observed to inhibit the yeast cell cycle in S. schenckii. RESULTS: The presence of RNA interference (RNAi) mechanism in this fungus was confirmed by the identification of a Dicer-1 homologue in S. schenckii DNA. RNAi technology was used to corroborate the role of calcium/calmodulin kinase I in S. schenckii dimorphism. Yeast cells were transformed with the pSilent-Dual2G (pSD2G) plasmid w/wo inserts of the coding region of the calcium/calmodulin kinase I (sscmk1) gene. Transformants were selected at 35°C using resistance to geneticin. Following transfer to liquid medium at 35°C, RNAi transformants developed as abnormal mycelium clumps and not as yeast cells as would be expected. The level of sscmk1 gene expression in RNAi transformants at 35°C was less than that of cells transformed with the empty pSD2G at this same temperature. Yeast two-hybrid analysis of proteins that interact with SSCMK1 identified a homologue of heat shock protein 90 (HSP90) as interacting with this kinase. Growth of the fungus similar to that of the RNAi transformants was observed in medium with geldanamycin (GdA, 10 µM), an inhibitor of HSP90. CONCLUSIONS: Using the RNAi technology we silenced the expression of sscmk1 gene in this fungus. RNAi transformants were unable to grow as yeast cells at 35°C showing decreased tolerance to this temperature. The interaction of SSCMK1 with HSP90, observed using the yeast two-hybrid assay suggests that this kinase is involved in thermotolerance through its interaction with HSP90. SSCMK1 interacted with the C terminal domain of HSP90 where effector proteins and co-chaperones interact. These results confirmed SSCMK1 as an important enzyme involved in the dimorphism of S. schenckii, necessary for the development of the yeast phase of this fungus. Also this study constitutes the first report of the transformation of S. schenckii and the use of RNAi to study gene function in this fungus.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinases/metabolism , HSP90 Heat-Shock Proteins/metabolism , Sporothrix/enzymology , Sporothrix/pathogenicity , Calcium-Calmodulin-Dependent Protein Kinases/genetics , Gene Silencing , HSP90 Heat-Shock Proteins/genetics , Hyphae/growth & development , Molecular Sequence Data , Protein Binding , RNA, Small Interfering/metabolism , Sequence Analysis, DNA , Sporothrix/genetics , Sporothrix/growth & development , Temperature , Two-Hybrid System Techniques
13.
BMC Microbiol ; 10: 317, 2010 Dec 09.
Article in English | MEDLINE | ID: mdl-21143936

ABSTRACT

BACKGROUND: Important biological processes require selective and orderly protein-protein interactions at every level of the signalling cascades. G proteins are a family of heterotrimeric GTPases that effect eukaryotic signal transduction through the coupling of cell surface receptors to cytoplasmic effector proteins. They have been associated with growth and pathogenicity in many fungi through gene knock-out studies. In Sporothrix schenckii, a pathogenic, dimorphic fungus, we previously identified a pertussis sensitive G alpha subunit, SSG-1. In this work we inquire into its interactions with other proteins. RESULTS: Using the yeast two-hybrid technique, we identified protein-protein interactions between SSG-1 and other important cellular proteins. The interactions were corroborated using co-immuneprecipitation. Using these techniques we identified a Fe/Mn superoxide dismutase (SOD), a glyceraldehyde-3-P dehydrogenase (GAPDH) and two ion transport proteins, a siderophore-iron transporter belonging to the Major Facilitator Superfamily (MFS) and a divalent-cation transporter of the Nramp (natural resistance-associated macrophage protein) family as interacting with SSG-1. The cDNA's encoding these proteins were sequenced and bioinformatic macromolecular sequence analyses were used for the correct classification and functional assignment. CONCLUSIONS: This study constitutes the first report of the interaction of a fungal G alpha inhibitory subunit with SOD, GAPDH, and two metal ion transporters. The identification of such important proteins as partners of a G alpha subunit in this fungus suggests possible mechanisms through which this G protein can affect pathogenicity and survival under conditions of environmental stress or inside the human host. The two ion transporters identified in this work are the first to be reported in S. schenckii and the first time they are identified as interacting with fungal G protein alpha subunits. The association of G protein alpha subunits to transport molecules reinforces the role of G proteins in the response to environmental signals and also highlights the involvement of fungal G protein alpha subunits in nutrient sensing in S. schenckii. These interactions suggest that these permeases could function as transceptors for G proteins in fungi.


Subject(s)
Fungal Proteins/metabolism , GTP-Binding Protein alpha Subunits/metabolism , Sporothrix/physiology , Amino Acid Sequence , Base Sequence , Fungal Proteins/chemistry , Fungal Proteins/genetics , GTP-Binding Protein alpha Subunits/chemistry , GTP-Binding Protein alpha Subunits/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Humans , Molecular Sequence Data , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Binding , Protein Multimerization , Sporothrix/chemistry , Sporothrix/genetics , Sporothrix/pathogenicity , Sporotrichosis/microbiology , Stress, Physiological , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Two-Hybrid System Techniques
14.
PLoS One ; 5(11): e13999, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-21085574

ABSTRACT

BACKGROUND: Phylogenetic study of protein sequences provides unique and valuable insights into the molecular and genetic basis of important medical and epidemiological problems as well as insights about the origins and development of physiological features in present day organisms. Consensus phylogenies based on the bootstrap and other resampling methods play a crucial part in analyzing the robustness of the trees produced for these analyses. METHODOLOGY: Our focus was to increase the number of bootstrap replications that can be performed on large protein datasets using the maximum parsimony, distance matrix, and maximum likelihood methods. We have modified the PHYLIP package using MPI to enable large-scale phylogenetic study of protein sequences, using a statistically robust number of bootstrapped datasets, to be performed in a moderate amount of time. This paper discusses the methodology used to parallelize the PHYLIP programs and reports the performance of the parallel PHYLIP programs that are relevant to the study of protein evolution on several protein datasets. CONCLUSIONS: Calculations that currently take a few days on a state of the art desktop workstation are reduced to calculations that can be performed over lunchtime on a modern parallel computer. Of the three protein methods tested, the maximum likelihood method scales the best, followed by the distance method, and then the maximum parsimony method. However, the maximum likelihood method requires significant memory resources, which limits its application to more moderately sized protein datasets.


Subject(s)
Computational Biology/methods , Phylogeny , Proteins/genetics , Algorithms , Animals , Humans , Proteins/classification , Reproducibility of Results , Sequence Alignment/methods , Software
15.
BMC Microbiol ; 9: 100, 2009 May 19.
Article in English | MEDLINE | ID: mdl-19454031

ABSTRACT

BACKGROUND: Sporothrix schenckii is a pathogenic dimorphic fungus, the etiological agent of sporotrichosis, a lymphocutaneous disease that can remain localized or can disseminate, involving joints, lungs, and the central nervous system. Pathogenic fungi use signal transduction pathways to rapidly adapt to changing environmental conditions and S. schenckii is no exception. S. schenckii yeast cells, either proliferate (yeast cell cycle) or engage in a developmental program that includes proliferation accompanied by morphogenesis (yeast to mycelium transition) depending on the environmental conditions. The principal intracellular receptors of environmental signals are the heterotrimeric G proteins, suggesting their involvement in fungal dimorphism and pathogenicity. Identifying these G proteins in fungi and their involvement in protein-protein interactions will help determine their role in signal transduction pathways. RESULTS: In this work we describe a new G protein alpha subunit gene in S. schenckii, ssg-2. The cDNA sequence of ssg-2 revealed a predicted open reading frame of 1,065 nucleotides encoding a 355 amino acids protein with a molecular weight of 40.9 kDa. When used as bait in a yeast two-hybrid assay, a cytoplasmic phospholipase A2 catalytic subunit was identified as interacting with SSG-2. The sspla2 gene, revealed an open reading frame of 2538 bp and encoded an 846 amino acid protein with a calculated molecular weight of 92.62 kDa. The principal features that characterize cPLA2 were identified in this enzyme such as a phospholipase catalytic domain and the characteristic invariable arginine and serine residues. A role for SSPLA2 in the control of dimorphism in S. schenckii is suggested by observing the effects of inhibitors of the enzyme on the yeast cell cycle and the yeast to mycelium transition in this fungus. Phospholipase A2 inhibitors such as AACOCF3 (an analogue of archidonic acid) and isotetrandrine (an inhibitor of G protein PLA2 interactions) were found to inhibit budding by yeasts induced to re-enter the yeast cell cycle and to stimulate the yeast to mycelium transition showing that this enzyme is necessary for the yeast cell cycle. CONCLUSION: A new G protein alpha subunit gene was characterized in S. schenckii and protein-protein interactions studies revealed this G protein alpha subunit interacts with a cPLA2 homologue. The PLA2 homologue reported here is the first phospholipase identified in S. schenckii and the first time a PLA2 homologue is identified as interacting with a G protein alpha subunit in a pathogenic dimorphic fungus, establishing a relationship between these G proteins and the pathogenic potential of fungi. This cPLA2 homologue is known to play a role in signal transduction and fungal pathogenesis. Using cPLA2 inhibitors, this enzyme was found to affect dimorphism in S. schenckii and was found to be necessary for the development of the yeast or pathogenic form of the fungus.


Subject(s)
Fungal Proteins/genetics , GTP-Binding Protein alpha Subunits/genetics , Phospholipases A2, Cytosolic/genetics , Sporothrix/enzymology , Amino Acid Sequence , Base Sequence , DNA, Complementary/genetics , DNA, Fungal/genetics , Genes, Fungal , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, DNA , Signal Transduction , Sporothrix/genetics , Two-Hybrid System Techniques
16.
Malar J ; 8: 1, 2009 Jan 02.
Article in English | MEDLINE | ID: mdl-19118502

ABSTRACT

BACKGROUND: The ATP-binding cassette (ABC) superfamily is one of the largest evolutionarily conserved families of proteins. ABC proteins play key roles in cellular detoxification of endobiotics and xenobiotics. Overexpression of certain ABC proteins, among them the multidrug resistance associated protein (MRP), contributes to drug resistance in organisms ranging from human neoplastic cells to parasitic protozoa. In the present study, the Plasmodium berghei mrp gene (pbmrp) was partially characterized and the predicted protein was classified using bioinformatics in order to explore its putative involvement in drug resistance. METHODS: The pbmrp gene from the P. berghei drug sensitive, N clone, was sequenced using a PCR strategy. Classification and domain organization of pbMRP were determined with bioinformatics. The Plasmodium spp. MRPs were aligned and analysed to study their conserved motifs and organization. Gene copy number and organization were determined via Southern blot analysis in both N clone and the chloroquine selected line, RC. Chromosomal Southern blots and RNase protection assays were employed to determine the chromosomal location and expression levels of pbmrp in blood stages. RESULTS: The pbmrp gene is a single copy, intronless gene with a predicted open reading frame spanning 5820 nucleotides. Bioinformatic analyses show that this protein has distinctive features characteristic of the ABCC sub-family. Multiple sequence alignments reveal a high degree of conservation in the nucleotide binding and transmembrane domains within the MRPs from the Plasmodium spp. analysed. Expression of pbmrp was detected in asexual blood stages. Gene organization, copy number and mRNA expression was similar in both lines studied. A chromosomal translocation was observed in the chloroquine selected RC line, from chromosome 13/14 to chromosome 8, when compared to the drug sensitive N clone. CONCLUSION: In this study, the pbmrp gene was sequenced and classified as a member of the ABCC sub-family. Multiple sequence alignments reveal that this gene is homologous to the Plasmodium y. yoelii and Plasmodium knowlesi mrp, and the Plasmodium vivax and Plasmodium falciparum mrp2 genes. There were no differences in gene organization, copy number, or mRNA expression between N clone and the RC line, but a chromosomal translocation of pbmrp from chromosome 13/14 to chromosome 8 was detected in RC.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Antimalarials/pharmacology , Chloroquine/pharmacology , Computational Biology , Drug Resistance, Multiple/genetics , Multidrug Resistance-Associated Proteins/genetics , Plasmodium berghei/genetics , Protozoan Proteins/genetics , Amino Acid Sequence , Animals , Blotting, Southern , Chromosome Mapping , Electrophoresis, Gel, Pulsed-Field , Malaria/parasitology , Mice , Molecular Sequence Data , Multidrug Resistance-Associated Protein 2 , Open Reading Frames , Plasmodium berghei/chemistry , Plasmodium berghei/drug effects , Polymerase Chain Reaction , RNA, Protozoan/chemistry , Sequence Alignment
17.
BMC Microbiol ; 7: 107, 2007 Nov 29.
Article in English | MEDLINE | ID: mdl-18047672

ABSTRACT

BACKGROUND: Sporothrix schenckii is a pathogenic, dimorphic fungus, the etiological agent of sporotrichosis, a subcutaneous lymphatic mycosis. Dimorphism in S. schenckii responds to second messengers such as cAMP and calcium, suggesting the possible involvement of a calcium/calmodulin kinase in its regulation. In this study we describe a novel calcium/calmodulin-dependent protein kinase gene in S. schenckii, sscmk1, and the effects of inhibitors of calmodulin and calcium/calmodulin kinases on the yeast to mycelium transition and the yeast cell cycle. RESULTS: Using the PCR homology approach a new member of the calcium/calmodulin kinase family, SSCMK1, was identified in this fungus. The cDNA sequence of sscmk1 revealed an open reading frame of 1,221 nucleotides encoding a 407 amino acid protein with a predicted molecular weight of 45.6 kDa. The genomic sequence of sscmk1 revealed the same ORF interrupted by five introns. Bioinformatic analyses of SSCMK1 showed that this protein had the distinctive features that characterize a calcium/calmodulin protein kinase: a serine/threonine protein kinase domain and a calmodulin-binding domain. When compared to homologues from seven species of filamentous fungi, SSCMK1 showed substantial similarities, except for a large and highly variable region that encompasses positions 330 - 380 of the multiple sequence alignment. Inhibition studies using calmodulin inhibitor W-7, and calcium/calmodulin kinase inhibitors, KN-62 and lavendustin C, were found to inhibit budding by cells induced to re-enter the yeast cell cycle and to favor the yeast to mycelium transition. CONCLUSION: This study constitutes the first evidence of the presence of a calcium/calmodulin kinase-encoding gene in S. schenckii and its possible involvement as an effector of dimorphism in this fungus. These results suggest that a calcium/calmodulin dependent signaling pathway could be involved in the regulation of dimorphism in this fungus. The results suggest that the calcium/calmodulin kinases of yeasts are evolutionarily distinct from those in filamentous fungi.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinases/chemistry , Calcium-Calmodulin-Dependent Protein Kinases/genetics , Sporothrix/enzymology , Amino Acid Sequence , Base Sequence , Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinases/isolation & purification , Calmodulin/antagonists & inhibitors , Calmodulin/metabolism , Cell Cycle/drug effects , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Fungal , Molecular Sequence Data , Mycelium/drug effects , Phylogeny , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Sporothrix/drug effects , Sporothrix/genetics , Sporothrix/growth & development , Yeasts/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...