Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 12(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36830001

ABSTRACT

In this study, freeze-drying microencapsulation was proposed as a technology for the production of powdered hop extracts with high stability intended as additives/ingredients in innovative formulated food products. The effects of different carriers (maltodextrin, Arabic gum, and their mixture in 1:1 w/w ratio) on the physical and techno-functional properties, bitter acids content, yield and polyphenols encapsulation efficiency of the powders were assessed. Additionally, the powders' stability was evaluated for 35 days at different temperatures and compared with that of non-encapsulated extract. Coating materials influenced the moisture content, water activity, colour, flowability, microstructure, and water sorption behaviour of the microencapsulates, but not their solubility. Among the different carriers, maltodextrin showed the lowest polyphenol load yield and bitter acid content after processing but the highest encapsulation efficiency and protection of hop extracts' antioxidant compounds during storage. Irrespective of the encapsulating agent, microencapsulation did not hinder the loss of bitter acids during storage. The results of this study demonstrate the feasibility of freeze-drying encapsulation in the development of functional ingredients, offering new perspectives for hop applications in the food and non-food sectors.

2.
J Sci Food Agric ; 103(4): 2047-2056, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36461135

ABSTRACT

BACKGROUND: The present study focused on the effect of isothermal treatment (5-90 °C) and pH (2.0-6.0) of aqueous olive leaf phenolic extract solutions on the kinetics of degradation of single and total phenolic compounds and radical scavenging activity, with the objective of predicting and optimizing the thermal treatments in foods enriched with olive leaf extracts. RESULTS: The major compound, oleuropein, showed higher degradation at low pH 2.0 and temperature-dependent reaction rates, which fitted well a first-order kinetic model, with an estimated activation energy of 98.03 ± 0.08 kJ mol-1 . Oleuropein hydrolysis resulted in a zero-order increase in hydroxytyrosol concentration at same pH (Ea  = 71.59 ± 1.5 kJ mol-1 ), whereas a 100-fold slower degradation rate was observed at higher pH. Verbascoside was only degraded at pH 6.0, also following first-order kinetics. These changes in oleuropein and hydroxytyrosol concentrations led to significant changes in fluorescence maximum intensities centered around 315 and 360 nm and in the 425-500 nm spectral zone for samples at pH 6.0, which could be associated with verbacoside degradation. Conversely, analysis of total phenolic content and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity showed little changes, indicating a rather constant overall reducing capacity of the resulting pool of compounds after thermal treatments. CONCLUSION: The present study can contribute to the knowledge related to oleuropein and phenolic fraction degradation as a result of matrix (pH) and processing. The kinetic parameters obtained could be applied for predicting and optimizing the thermal treatments in foods and drinks enriched with olive leaf extracts. © 2022 Society of Chemical Industry.


Subject(s)
Antioxidants , Olea , Antioxidants/chemistry , Hot Temperature , Iridoids/chemistry , Phenols/chemistry , Olea/chemistry , Plant Extracts/chemistry , Hydrogen-Ion Concentration , Plant Leaves
3.
Biochim Biophys Acta Biomembr ; 1864(10): 183999, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35820494

ABSTRACT

(-)-Epigallocatechin-3-gallate (EGCG) is a flavonoid known for its good antioxidant potential and health benefits. It is one of the most intriguing flavonoids, especially because of its specific interactions with model lipid membranes. It was noticed that EGCG might form EGCG rich domains/rafts at certain compositions of lipid membranes. In this article, we investigate whether EGCG forms EGCG rich domains when incorporated in 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) liposomes. Our results show that EGCG decreases lipid ordering parameter in ordered membranes and increases it in the case of disordered ones. Also, incorporation of EGCG does not affect the zeta-potential and shape of the liposomes, but it can induce aggregation of liposomes. Our study also demonstrates that liposomes with incorporated EGCG are highly protected against UV-light induced oxidation.


Subject(s)
Catechin , Liposomes , Antioxidants , Catechin/analogs & derivatives , Lipids
SELECTION OF CITATIONS
SEARCH DETAIL
...