Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 134(20)2021 10 15.
Article in English | MEDLINE | ID: mdl-34553765

ABSTRACT

Protein tyrosine phosphatase 1B (PTP1B, also known as PTPN1) is an established regulator of cell-matrix adhesion and motility. However, the nature of substrate targets at adhesion sites remains to be validated. Here, we used bimolecular fluorescence complementation assays, in combination with a substrate trapping mutant of PTP1B, to directly examine whether relevant phosphotyrosines on paxillin and focal adhesion kinase (FAK, also known as PTK2) are substrates of the phosphatase in the context of cell-matrix adhesion sites. We found that the formation of catalytic complexes at cell-matrix adhesions requires intact tyrosine residues Y31 and Y118 on paxillin, and the localization of FAK at adhesion sites. Additionally, we found that PTP1B specifically targets Y925 on the focal adhesion targeting (FAT) domain of FAK at adhesion sites. Electrostatic analysis indicated that dephosphorylation of this residue promotes the closed conformation of the FAT 4-helix bundle and its interaction with paxillin at adhesion sites.


Subject(s)
Phosphoproteins , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Cell-Matrix Junctions/metabolism , Cytoskeletal Proteins/metabolism , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesions/metabolism , Paxillin/genetics , Paxillin/metabolism , Phosphoproteins/metabolism , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
2.
PLoS One ; 11(6): e0156758, 2016.
Article in English | MEDLINE | ID: mdl-27254316

ABSTRACT

It is well established that binding of p120 catenin to the cytoplasmic domain of surface cadherin prevents cadherin endocytosis and degradation, contributing to cell-cell adhesion. In the present work we show that p120 catenin bound to the N-cadherin precursor, contributes to its anterograde movement from the endoplasmic reticulum (ER) to the Golgi complex. In HeLa cells, depletion of p120 expression, or blocking its binding to N-cadherin, increased the accumulation of the precursor in the ER, while it decreased the localization of mature N-cadherin at intercellular junctions. Reconstitution experiments in p120-deficient SW48 cells with all three major isoforms of p120 (1, 3 and 4) had similar capacity to promote the processing of the N-cadherin precursor to the mature form, and its localization at cell-cell junctions. P120 catenin and protein tyrosine phosphatase PTP1B facilitated the recruitment of the N-ethylmaleimide sensitive factor (NSF), an ATPase involved in vesicular trafficking, to the N-cadherin precursor complex. Dominant negative NSF E329Q impaired N-cadherin trafficking, maturation and localization at cell-cell junctions. Our results uncover a new role for p120 catenin bound to the N-cadherin precursor ensuring its trafficking through the biosynthetic pathway towards the cell surface.


Subject(s)
Cadherins/metabolism , Catenins/metabolism , Gene Knockdown Techniques , HeLa Cells , Humans , Models, Biological , N-Ethylmaleimide-Sensitive Proteins/metabolism , Protein Binding , Protein Processing, Post-Translational , Protein Transport , Secretory Pathway , Delta Catenin
3.
Biol Open ; 5(1): 32-44, 2015 Dec 23.
Article in English | MEDLINE | ID: mdl-26700725

ABSTRACT

Cell contractility and migration by integrins depends on precise regulation of protein tyrosine kinase and Rho-family GTPase activities in specific spatiotemporal patterns. Here we show that protein tyrosine phosphatase PTP1B cooperates with ß3 integrin to activate the Src/FAK signalling pathway which represses RhoA-myosin-dependent contractility. Using PTP1B null (KO) cells and PTP1B reconstituted (WT) cells, we determined that some early steps following cell adhesion to fibronectin and vitronectin occurred robustly in WT cells, including aggregation of ß3 integrins and adaptor proteins, and activation of Src/FAK-dependent signalling at small puncta in a lamellipodium. However, these events were significantly impaired in KO cells. We established that cytoskeletal strain and cell contractility was highly enhanced at the periphery of KO cells compared to WT cells. Inhibition of the Src/FAK signalling pathway or expression of constitutive active RhoA in WT cells induced a KO cell phenotype. Conversely, expression of constitutive active Src or myosin inhibition in KO cells restored the WT phenotype. We propose that this novel function of PTP1B stimulates permissive conditions for adhesion and lamellipodium assembly at the protruding edge during cell spreading and migration.

4.
Cell Adh Migr ; 7(5): 418-23, 2013.
Article in English | MEDLINE | ID: mdl-24104540

ABSTRACT

Cell migration requires a highly coordinated interplay between specialized plasma membrane adhesion complexes and the cytoskeleton. Protein phosphorylation/dephosphorylation modifications regulate many aspects of the integrin-cytoskeleton interdependence, including their coupling, dynamics, and organization to support cell movement. The endoplasmic reticulum-bound protein tyrosine phosphatase PTP1B has been implicated as a regulator of cell adhesion and migration. Recent results from our laboratory shed light on potential mechanisms, such as Src/FAK signaling through Rho GTPases and integrin-cytoskeletal coupling.


Subject(s)
Cell Adhesion/genetics , Cell Movement/genetics , Endoplasmic Reticulum/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Cell Membrane/metabolism , Cytoskeleton/metabolism , Endoplasmic Reticulum/metabolism , Focal Adhesion Kinase 1/metabolism , Humans , Integrins/metabolism , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Signal Transduction , rho GTP-Binding Proteins/genetics , src-Family Kinases/metabolism
5.
PLoS One ; 7(6): e38948, 2012.
Article in English | MEDLINE | ID: mdl-22701734

ABSTRACT

PTP1B is an endoplasmic reticulum (ER) anchored enzyme whose access to substrates is partly dependent on the ER distribution and dynamics. One of these substrates, the protein tyrosine kinase Src, has been found in the cytosol, endosomes, and plasma membrane. Here we analyzed where PTP1B and Src physically interact in intact cells, by bimolecular fluorescence complementation (BiFC) in combination with temporal and high resolution microscopy. We also determined the structural basis of this interaction. We found that BiFC signal is displayed as puncta scattered throughout the ER network, a feature that was enhanced when the substrate trapping mutant PTP1B-D181A was used. Time-lapse and co-localization analyses revealed that BiFC puncta did not correspond to vesicular carriers; instead they localized at the tip of dynamic ER tubules. BiFC puncta were retained in ventral membrane preparations after cell unroofing and were also detected within the evanescent field of total internal reflection fluorescent microscopy (TIRFM) associated to the ventral membranes of whole cells. Furthermore, BiFC puncta often colocalized with dark spots seen by surface reflection interference contrast (SRIC). Removal of Src myristoylation and polybasic motifs abolished BiFC. In addition, PTP1B active site and negative regulatory tyrosine 529 on Src were primary determinants of BiFC occurrence, although the SH3 binding motif on PTP1B also played a role. Our results suggest that ER-bound PTP1B dynamically interacts with the negative regulatory site at the C-terminus of Src at random puncta in the plasma membrane/substrate interface, likely leading to Src activation and recruitment to adhesion complexes. We postulate that this functional ER/plasma membrane crosstalk could apply to a wide array of protein partners, opening an exciting field of research.


Subject(s)
Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , src-Family Kinases/metabolism , Animals , Antibodies, Monoclonal , Blotting, Western , CHO Cells , Cell Adhesion/physiology , Cricetinae , Cricetulus , Fluorescent Antibody Technique , Humans , Mice , Microscopy, Fluorescence , Polymerase Chain Reaction , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Time-Lapse Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...