Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Epilepsia ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953796

ABSTRACT

OBJECTIVE: DYNC1H1 variants are involved on a disease spectrum from neuromuscular disorders to neurodevelopmental disorders. DYNC1H1-related epilepsy has been reported in small cohorts. We dissect the electroclinical features of 34 patients harboring de novo DYNC1H1 pathogenic variants, identify subphenotypes on the DYNC1H1-related epilepsy spectrum, and compare the genotype-phenotype correlations observed in our cohort with the literature. METHODS: Patients harboring de novo DYNC1H1 pathogenic variants were recruited through international collaborations. Clinical data were retrospectively collected. Latent class analysis was performed to identify subphenotypes. Multivariable binary logistic regression analysis was applied to investigate the association with DYNC1H1 protein domains. RESULTS: DYNC1H1-related epilepsy presented with infantile epileptic spasms syndrome (IESS) in 17 subjects (50%), and in 25% of these individuals the epileptic phenotype evolved into Lennox-Gastaut syndrome (LGS). In 12 patients (35%), focal onset epilepsy was defined. In two patients, the epileptic phenotype consisted of generalized myoclonic epilepsy, with a progressive phenotype in one individual harboring a frameshift variant. In approximately 60% of our cohort, seizures were drug-resistant. Malformations of cortical development were noticed in 79% of our patients, mostly on the lissencephaly-pachygyria spectrum, particularly with posterior predominance in a half of them. Midline and infratentorial abnormalities were additionally reported in 45% and 27% of subjects. We have identified three main classes of subphenotypes on the DYNC1H1-related epilepsy spectrum. SIGNIFICANCE: We propose a classification in which pathogenic de novo DYNC1H1 variants feature drug-resistant IESS in half of cases with potential evolution to LGS (Class 1), developmental and epileptic encephalopathy other than IESS and LGS (Class 2), or less severe focal or genetic generalized epilepsy including a progressive phenotype (Class 3). We observed an association between stalk domain variants and Class 1 phenotypes. The variants p.Arg309His and p.Arg1962His were common and associated with Class 1 subphenotype in our cohort. These findings may aid genetic counseling of patients with DYNC1H1-related epilepsy.

2.
Biology (Basel) ; 13(2)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38392311

ABSTRACT

Advances in gene-specific therapeutics for patients with neuromuscular disorders (NMDs) have brought increased attention to the importance of genetic diagnosis. Genetic testing practices vary among adult neuromuscular clinics, with multi-gene panel testing currently being the most common approach; follow-up testing using broad-based methods, such as exome or genome sequencing, is less consistently offered. Here, we use five case examples to illustrate the unique ability of broad-based testing to improve diagnostic yield, resulting in identification of SORD-neuropathy, HADHB-related disease, ATXN2-ALS, MECP2 related progressive gait decline and spasticity, and DNMT1-related cerebellar ataxia, deafness, narcolepsy, and hereditary sensory neuropathy type 1E. We describe in each case the technological advantages that enabled identification of the causal gene, and the resultant clinical and personal implications for the patient, demonstrating the importance of offering exome or genome sequencing to adults with NMDs.

3.
J Neurol ; 271(2): 733-747, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37891417

ABSTRACT

The role of genetic testing in neurologic clinical practice has increased dramatically in recent years, driven by research on genetic causes of neurologic disease and increased availability of genetic sequencing technology. Genetic testing is now indicated for adults with a wide range of common neurologic conditions. The potential clinical impacts of a genetic diagnosis are also rapidly expanding, with a growing list of gene-specific treatments and clinical trials, in addition to important implications for prognosis, surveillance, family planning, and diagnostic closure. The goals of this review are to provide practical guidance for clinicians about the role of genetics in their practice and to provide the neuroscience research community with a broad survey of current progress in this field. We aim to answer three questions for the neurologist in practice: Which of my patients need genetic testing? What testing should I order? And how will genetic testing help my patient? We focus on common neurologic disorders and presentations to the neurology clinic. For each condition, we review the most current guidelines and evidence regarding indications for genetic testing, expected diagnostic yield, and recommended testing approach. We also focus on clinical impacts of genetic diagnoses, highlighting a number of gene-specific therapies recently approved for clinical use, and a rapidly expanding landscape of gene-specific clinical trials, many using novel nucleotide-based therapeutic modalities like antisense oligonucleotides and gene transfer. We anticipate that more widespread use of genetic testing will help advance therapeutic development and improve the care, and outcomes, of patients with neurologic conditions.


Subject(s)
Nervous System Diseases , Neurosciences , Adult , Humans , Nervous System Diseases/diagnosis , Nervous System Diseases/genetics , Nervous System Diseases/therapy , Genetic Testing , Neurologists , Ambulatory Care Facilities
5.
Hum Gene Ther ; 34(9-10): 404-415, 2023 05.
Article in English | MEDLINE | ID: mdl-36694468

ABSTRACT

Duchenne muscular dystrophy (DMD) is a serious, rare genetic disease, affecting primarily boys. It is caused by mutations in the DMD gene and is characterized by progressive muscle degeneration that results in loss of function and early death due to respiratory and/or cardiac failure. Although limited treatment options are available, some for only small subsets of the patient population, DMD remains a disease with large unmet medical needs. The adeno-associated virus (AAV) vector is the leading gene delivery system for addressing genetic neuromuscular diseases. Since the gene encoding the full-length dystrophin protein exceeds the packaging capacity of a single AAV vector, gene replacement therapy based on AAV-delivery of shortened, yet, functional microdystrophin genes has emerged as a promising treatment. This article seeks to explain the rationale for use of the accelerated approval pathway to advance AAV microdystrophin gene therapy for DMD. Specifically, we provide support for the use of microdystrophin expression as a surrogate endpoint that could be used in clinical trials to support accelerated approval.


Subject(s)
Muscular Dystrophy, Duchenne , Male , Humans , Muscular Dystrophy, Duchenne/genetics , Muscle, Skeletal/metabolism , Genetic Therapy/methods , Gene Transfer Techniques , Biomarkers/metabolism
6.
HGG Adv ; 4(1): 100146, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36262216

ABSTRACT

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by CAG trinucleotide repeat expansions in exon-1 of huntingtin (HTT). Currently, there is no cure for HD, and the clinical care of individuals with HD is focused on symptom management. Previously, we showed allele-specific deletion of the expanded HTT allele (mHTT) using CRISPR-Cas9 by targeting nearby (<10 kb) SNPs that created or eliminated a protospacer adjacent motif (PAM) near exon-1. Here, we comprehensively analyzed all potential PAM sites within a 10.4-kb genomic region flanking exon-1 of HTT in 983 individuals with HD using a multiplex targeted long-read sequencing approach on the Oxford Nanopore platform. We developed computational tools (NanoBinner and NanoRepeat) to de-multiplex the data, detect repeats, and phase the reads on the expanded or the wild-type HTT allele. One SNP common to 30% of individuals with HD of European ancestry emerged through this analysis, which was confirmed as a strong candidate for allele-specific deletion of the mHTT in human HD cell lines. In addition, up to 57% HD individuals may be candidates for allele-specific editing through combinatorial SNP targeting. Cumulatively, we provide a haplotype map of the region surrounding exon-1 of HTT in individuals affected with HD. Our workflow can be applied to other repeat expansion diseases to facilitate the design of guide RNAs for allele-specific gene editing.


Subject(s)
Gene Editing , Neurodegenerative Diseases , Humans , Alleles , Polymorphism, Single Nucleotide/genetics , Haplotypes/genetics
7.
Genome Biol ; 23(1): 108, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484600

ABSTRACT

Despite recent improvements in basecalling accuracy, nanopore sequencing still has higher error rates on short-tandem repeats (STRs). Instead of using basecalled reads, we developed DeepRepeat which converts ionic current signals into red-green-blue channels, thus transforming the repeat detection problem into an image recognition problem. DeepRepeat identifies and accurately quantifies telomeric repeats in the CHM13 cell line and achieves higher accuracy in quantifying repeats in long STRs than competing methods. We also evaluate DeepRepeat on genome-wide or candidate region datasets from seven different sources. In summary, DeepRepeat enables accurate quantification of long STRs and complements existing methods relying on basecalled reads.


Subject(s)
Nanopore Sequencing , Nanopores , Genome , High-Throughput Nucleotide Sequencing/methods , Microsatellite Repeats
8.
Front Digit Health ; 4: 874208, 2022.
Article in English | MEDLINE | ID: mdl-35445206

ABSTRACT

The Unified Huntington's Disease Rating Scale (UHDRS) is the primary clinical assessment tool for rating motor function in patients with Huntington's disease (HD). However, the UHDRS and similar rating scales (e.g., UPDRS) are both subjective and limited to in-office assessments that must be administered by a trained and experienced rater. An objective, automated method of quantifying disease severity would facilitate superior patient care and could be used to better track severity over time. We conducted the present study to evaluate the feasibility of using wearable sensors, coupled with machine learning algorithms, to rate motor function in patients with HD. Fourteen participants with symptomatic HD and 14 healthy controls participated in the study. Each participant wore five adhesive biometric sensors applied to the trunk and each limb while completing brief walking, sitting, and standing tasks during a single office visit. A two-stage machine learning method was employed to classify participants by HD status and to predict UHDRS motor subscores. Linear discriminant analysis correctly classified all participants' HD status except for one control subject with abnormal gait (96.4% accuracy, 92.9% sensitivity, and 100% specificity in leave-one-out cross-validation). Two regression models accurately predicted individual UHDRS subscores for gait, and dystonia within a 10% margin of error. Our regression models also predicted a composite UHDRS score-a sum of left and right arm rigidity, total chorea, total dystonia, bradykinesia, gait, and tandem gait subscores-with an average error below 15%. Machine learning classifiers trained on brief in-office datasets discriminated between controls and participants with HD, and could accurately predict selected motor UHDRS subscores. Our results could enable the future use of biosensors for objective HD assessment in the clinic or remotely and could inform future studies for the use of this technology as a potential endpoint in clinical trials.

9.
J Huntingtons Dis ; 11(1): 81-89, 2022.
Article in English | MEDLINE | ID: mdl-35253771

ABSTRACT

BACKGROUND: Huntington's Disease Society of America Centers of Excellence (HDSA COEs) are primary hubs for Huntington's disease (HD) research opportunities and accessing new treatments. Data on the extent to which HDSA COEs are accessible to individuals with HD, particularly those older or disabled, are lacking. OBJECTIVE: To describe persons with HD in the U.S. Medicare program and characterize this population by proximity to an HDSA COE. METHODS: We conducted a cross-sectional study of Medicare beneficiaries ages ≥65 with HD in 2017. We analyzed data on benefit entitlement, demographics, and comorbidities. QGis software and Google Maps Interface were employed to estimate the distance from each patient to the nearest HDSA COE, and the proportion of individuals residing within 100 miles of these COEs at the state level. RESULTS: Among 9,056 Medicare beneficiaries with HD, 54.5% were female, 83.0% were white; 48.5% were ≥65 years, but 64.9% originally qualified for Medicare due to disability. Common comorbidities were dementia (32.4%) and depression (35.9%), and these were more common in HD vs. non-HD patients. Overall, 5,144 (57.1%) lived within 100 miles of a COE. Race/ethnicity, sex, age, and poverty markers were not associated with below-average proximity to HDSA COEs. The proportion of patients living within 100 miles of a center varied from < 10% (16 states) to > 90% (7 states). Most underserved states were in the Mountain and West Central divisions. CONCLUSION: Older Medicare beneficiaries with HD are frequently disabled and have a distinct comorbidity profile. Geographical, rather than sociodemographic factors, define the HD population with limited access to HDSA COEs.


Subject(s)
Huntington Disease , Aged , Cross-Sectional Studies , Female , Humans , Huntington Disease/epidemiology , Huntington Disease/therapy , Male , Medicare , United States
10.
Mov Disord ; 37(1): 137-147, 2022 01.
Article in English | MEDLINE | ID: mdl-34596301

ABSTRACT

BACKGROUND: Monogenic causes of isolated dystonia are heterogeneous. Assembling cohorts of affected individuals sufficiently large to establish new gene-disease relationships can be challenging. OBJECTIVE: We sought to expand the catalogue of monogenic etiologies for isolated dystonia. METHODS: After the discovery of a candidate variant in a multicenter exome-sequenced cohort of affected individuals with dystonia, we queried online platforms and genomic data repositories worldwide to identify subjects with matching genotypic profiles. RESULTS: Seven different biallelic loss-of-function variants in AOPEP were detected in five probands from four unrelated families with strongly overlapping phenotypes. In one proband, we observed a homozygous nonsense variant (c.1477C>T [p.Arg493*]). A second proband harbored compound heterozygous nonsense variants (c.763C>T [p.Arg255*]; c.777G>A [p.Trp259*]), whereas a third proband possessed a frameshift variant (c.696_697delAG [p.Ala234Serfs*5]) in trans with a splice-disrupting alteration (c.2041-1G>A). Two probands (siblings) from a fourth family shared compound heterozygous frameshift alleles (c.1215delT [p.Val406Cysfs*14]; c.1744delA [p.Met582Cysfs*6]). All variants were rare and expected to result in truncated proteins devoid of functionally important amino acid sequence. AOPEP, widely expressed in developing and adult human brain, encodes a zinc-dependent aminopeptidase, a member of a class of proteolytic enzymes implicated in synaptogenesis and neural maintenance. The probands presented with disabling progressive dystonia predominantly affecting upper and lower extremities, with variable involvement of craniocervical muscles. Dystonia was unaccompanied by any additional symptoms in three families, whereas the fourth family presented co-occurring late-onset parkinsonism. CONCLUSIONS: Our findings suggest a likely causative role of predicted inactivating biallelic AOPEP variants in cases of autosomal recessive dystonia. Additional studies are warranted to understand the pathophysiology associated with loss-of-function variation in AOPEP. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Aminopeptidases , Dystonia , Dystonic Disorders , Loss of Function Mutation , Aminopeptidases/genetics , Dystonia/genetics , Dystonic Disorders/genetics , Exome , Humans , Mutation , Pedigree , Phenotype
11.
Nat Med ; 27(11): 1982-1989, 2021 11.
Article in English | MEDLINE | ID: mdl-34663988

ABSTRACT

RNA interference (RNAi) for spinocerebellar ataxia type 1 can prevent and reverse behavioral deficits and neuropathological readouts in mouse models, with safety and benefit lasting over many months. The RNAi trigger, expressed from adeno-associated virus vectors (AAV.miS1), also corrected misregulated microRNAs (miRNA) such as miR150. Subsequently, we showed that the delivery method was scalable, and that AAV.miS1 was safe in short-term pilot nonhuman primate (NHP) studies. To advance the technology to patients, investigational new drug (IND)-enabling studies in NHPs were initiated. After AAV.miS1 delivery to deep cerebellar nuclei, we unexpectedly observed cerebellar toxicity. Both small-RNA-seq and studies using AAVs devoid of miRNAs showed that this was not a result of saturation of the endogenous miRNA processing machinery. RNA-seq together with sequencing of the AAV product showed that, despite limited amounts of cross-packaged material, there was substantial inverted terminal repeat (ITR) promoter activity that correlated with neuropathologies. ITR promoter activity was reduced by altering the miS1 expression context. The surprising contrast between our rodent and NHP findings highlight the need for extended safety studies in multiple species when assessing new therapeutics for human application.


Subject(s)
Dependovirus/genetics , Drug Carriers/administration & dosage , Genetic Therapy/methods , MicroRNAs/genetics , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/therapy , Animals , Animals, Genetically Modified , Brain Stem/pathology , Cerebellum/pathology , Female , Macaca mulatta , Male , Mice , Promoter Regions, Genetic/genetics , RNA Interference , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , RNA-Seq , Terminal Repeat Sequences/genetics
12.
Int J Mol Sci ; 22(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34361012

ABSTRACT

Loss-of-function mutations in the KV4.3 channel-encoding KCND3 gene are linked to neurodegenerative cerebellar ataxia. Patients suffering from neurodegeneration associated with iron deposition may also present with cerebellar ataxia. The mechanism underlying brain iron accumulation remains unclear. Here, we aim to ascertain the potential pathogenic role of KCND3 variant in iron accumulation-related cerebellar ataxia. We presented a patient with slowly progressive cerebellar ataxia, parkinsonism, cognitive impairment, and iron accumulation in the basal ganglia and the cerebellum. Whole exome sequencing analyses identified in the patient a heterozygous KCND3 c.1256G>A (p.R419H) variant predicted to be disease-causing by multiple bioinformatic analyses. In vitro biochemical and immunofluorescence examinations revealed that, compared to the human KV4.3 wild-type channel, the p.R419H variant exhibited normal protein abundance and subcellular localization pattern. Electrophysiological investigation, however, demonstrated that the KV4.3 p.R419H variant was associated with a dominant increase in potassium current amplitudes, as well as notable changes in voltage-dependent gating properties leading to enhanced potassium window current. These observations indicate that, in direct contrast with the loss-of-function KCND3 mutations previously reported in cerebellar ataxia patients, we identified a rare gain-of-function KCND3 variant that may expand the clinical and molecular spectra of neurodegenerative cerebellar disorders associated with brain iron accumulation.


Subject(s)
Cognitive Dysfunction/genetics , Gain of Function Mutation , Iron/metabolism , Parkinsonian Disorders/genetics , Shal Potassium Channels/genetics , Spinocerebellar Ataxias/genetics , Action Potentials , Aged , Brain/metabolism , Cognitive Dysfunction/pathology , HEK293 Cells , Humans , Male , Parkinsonian Disorders/pathology , Protein Domains , Shal Potassium Channels/chemistry , Shal Potassium Channels/metabolism , Spinocerebellar Ataxias/pathology
13.
Mov Disord ; 36(12): 2780-2794, 2021 12.
Article in English | MEDLINE | ID: mdl-34403156

ABSTRACT

BACKGROUND: X-linked dystonia parkinsonism is a generalized, progressive dystonia followed by parkinsonism with onset in adulthood and accompanied by striatal neurodegeneration. Causative mutations are located in a noncoding region of the TATA-box binding protein-associated factor 1 (TAF1) gene and result in aberrant splicing. There are 2 major TAF1 isoforms that may be decreased in symptomatic patients, including the ubiquitously expressed canonical cTAF1 and the neuronal-specific nTAF1. OBJECTIVE: The objective of this study was to determine the behavioral and transcriptomic effects of decreased cTAF1 and/or nTAF1 in vivo. METHODS: We generated adeno-associated viral (AAV) vectors encoding microRNAs targeting Taf1 in a splice-isoform selective manner. We performed intracerebroventricular viral injections in newborn mice and rats and intrastriatal infusions in 3-week-old rats. The effects of Taf1 knockdown were assayed at 4 months of age with evaluation of motor function, histology, and RNA sequencing of the striatum, followed by its validation. RESULTS: We report motor deficits in all cohorts, more pronounced in animals injected at P0, in which we also identified transcriptomic alterations in multiple neuronal pathways, including the cholinergic synapse. In both species, we show a reduced number of striatal cholinergic interneurons and their marker mRNAs after Taf1 knockdown in the newborn. CONCLUSION: This study provides novel information regarding the requirement for TAF1 in the postnatal maintenance of striatal cholinergic neurons, the dysfunction of which is involved in other inherited forms of dystonia. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Dystonia , Dystonic Disorders , Histone Acetyltransferases/genetics , Parkinsonian Disorders , TATA-Binding Protein Associated Factors/genetics , Transcription Factor TFIID/genetics , Adult , Animals , Cholinergic Agents , Dystonic Disorders/genetics , Dystonic Disorders/metabolism , Humans , Mice , Protein Isoforms , Rats
14.
J Genet Couns ; 30(4): 974-983, 2021 08.
Article in English | MEDLINE | ID: mdl-34265143

ABSTRACT

The COVID-19 pandemic rapidly changed genetic counseling services across the United States. At the University of Pennsylvania (UPenn), a large academic hospital in an urban setting, nearly all genetic counseling (GC) visits for adult-onset disorders within the Department of Neurology were conducted via secure videoconferencing (telegenetics) or telephone between March and December 2020. Although telemedicine services have been steadily emerging, many clinical programs, including the neurogenetics program at UPenn, had not built infrastructure or widely utilized these services prior to the pandemic. Thus, little is known about patient attitudes toward receiving clinical GC services remotely. From May 18 to October 18, 2020, all individuals seen remotely for GC in adult neurology via telephone or telegenetics were surveyed about their satisfaction with telehealth GC (N = 142), with a response rate of 42% (N = 60/142). Telephone and telegenetics services were referred to as 'telehealth' in the surveys to capture patient perspectives on all remote GC services, though the majority (N = 49/60) of these visits were completed via telegenetics. Surveys included the modified telehealth usability questionnaire (MTUQ), genetic counseling satisfaction scale (GCSS), and novel questions about future telehealth use. Preliminary results suggest that patients were satisfied with receiving remote GC services in adult neurology, with most participants strongly agreeing to all items about satisfaction with telehealth. Just 2% of participants preferred only in-person visits in the future, but every participant was willing to consider using telehealth for future visits if their genetic counselor felt it was appropriate. Most participants preferred a hybrid model (73%), and some (25%) preferred only telehealth for future visits. Additionally, we found no differences in satisfaction with remote services based on visit type (initial vs. results disclosure) nor age. We conclude that remote GC is an acceptable method for the provision of services in adult neurology that is well-received by patients.


Subject(s)
COVID-19 , Genetic Counseling , Neurology , Patient Satisfaction , Telemedicine , Adolescent , Adult , Aged , COVID-19/epidemiology , Female , Humans , Male , Middle Aged , Pandemics , Young Adult
15.
Am J Med Genet A ; 185(10): 2922-2928, 2021 10.
Article in English | MEDLINE | ID: mdl-34075706

ABSTRACT

While genetics evaluation is increasingly utilized in adult neurology patients, its usage and efficacy are not well characterized. Here, we report our experience with 1461 consecutive patients evaluated in an adult neurogenetics clinic at a large academic medical center between January 2015 and March 2020. Of the 1461 patients evaluated, 1215 patients were referred for the purposes of identifying a genetic diagnosis for an undiagnosed condition, 90.5% of whom underwent genetic testing. The modalities of genetic testing utilized varied across referral diagnostic categories, including a range of utilization of whole exome sequencing (WES) as an initial test in 13.9% of neuromuscular patients to 52.9% in white matter disorder patients. The usage of WES increased over time, from 7.7% of initial testing in 2015 to a peak of 27.3% in 2019. Overall, genetic testing yielded a causal genetic diagnosis in 30.7% of patients. This yield was higher in certain referring diagnosis categories, such as neuromuscular (39.0%) and epilepsy (29.8%). Our study demonstrates that evaluation at an adult neurogenetics referral center can yield diagnoses in a substantial fraction of patients. Additional research will be needed to determine optimal genetic testing strategies and cost effectiveness of adult neurogenetics evaluation.


Subject(s)
Genetic Testing/trends , Nervous System Diseases/diagnosis , Adult , Cost-Benefit Analysis , Diagnostic Tests, Routine/trends , Exome/genetics , Female , Humans , Male , Nervous System Diseases/genetics , Nervous System Diseases/pathology , Exome Sequencing
16.
Mov Disord ; 36(10): 2346-2357, 2021 10.
Article in English | MEDLINE | ID: mdl-34076298

ABSTRACT

BACKGROUND: Cytoplasmic inclusions of α-synuclein (α-syn) in brainstem neurons are characteristic of idiopathic Parkinson's disease (PD). PD also entails α-syn buildup in sympathetic nerves. Among genetic forms of PD, the relative extents of sympathetic intraneuronal accumulation of α-syn have not been reported. OBJECTIVE: This cross-sectional observational study compared magnitudes of intraneuronal deposition of α-syn in common and rare genetic forms of PD. METHODS: α-Syn deposition was quantified by the α-syn-tyrosine hydroxylase colocalization index in C2 cervical skin biopsies from 65 subjects. These included 30 subjects with pathogenic mutations in SNCA (n = 3), PRKN [biallelic (n = 7) and monoallelic (n = 3)], LRRK2 (n = 7), GBA (n = 7), or PARK7/DJ1 [biallelic (n = 1) and monoallelic (n = 2)]. Twenty-five of the mutation carriers had PD and five did not. Data were also analyzed from 19 patients with idiopathic PD and 16 control participants. RESULTS: α-Syn deposition varied as a function of genotype (F = 16.7, P < 0.0001). It was above the control range in 100% of subjects with SNCA mutations, 100% with LRRK2 mutations, 95% with idiopathic PD, 83% with GBA mutations, and 0% with biallelic PRKN mutations. α-Syn deposition in the biallelic PRKN group was significantly higher than in the control group. In addition, patients with biallelic PRKN mutations had higher α-syn deposition than their unaffected siblings. CONCLUSIONS: Individuals with SNCA, DJ-1, LRRK2, or GBA mutations have substantial intraneuronal α-syn deposition in sympathetic noradrenergic nerves in skin biopsies, whereas those with biallelic PRKN mutations do not. Biallelic PRKN patients may have mildly increased α-syn deposition compared with control subjects. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Cross-Sectional Studies , Humans , Mutation/genetics , Nerve Fibers , Parkinson Disease/genetics , alpha-Synuclein/genetics
18.
Mov Disord ; 36(5): 1147-1157, 2021 05.
Article in English | MEDLINE | ID: mdl-33458877

ABSTRACT

BACKGROUND: Similar to some monogenic forms of dystonia, levodopa-induced dyskinesia is a hyperkinetic movement disorder with abnormal nigrostriatal dopaminergic neurotransmission. Molecularly, it is characterized by hyper-induction of phosphorylation of extracellular signal-related kinase in response to dopamine in medium spiny neurons of the direct pathway. OBJECTIVES: The objective of this study was to determine if mouse models of monogenic dystonia exhibit molecular features of levodopa-induced dyskinesia. METHODS: Western blotting and quantitative immunofluorescence was used to assay baseline and/or dopamine-induced levels of the phosphorylated kinase in the striatum in mouse models of DYT1, DYT6, and DYT25 expressing a reporter in dopamine D1 receptor-expressing projection neurons. Cyclic adenosine monophosphate (cAMP) immunoassay and adenylyl cyclase activity assays were also performed. RESULTS: In DYT1 and DYT6 models, blocking dopamine reuptake with cocaine leads to enhanced extracellular signal-related kinase phosphorylation in dorsomedial striatal medium spiny neurons in the direct pathway, which is abolished by pretreatment with the N-methyl-d-aspartate antagonist MK-801. Phosphorylation is decreased in a model of DYT25. Levels of basal and stimulated cAMP and adenylyl cyclase activity were normal in the DYT1 and DYT6 mice and decreased in the DYT25 mice. Oxotremorine induced increased abnormal movements in the DYT1 knock-in mice. CONCLUSIONS: The increased dopamine induction of extracellular signal-related kinase phosphorylation in 2 genetic types of dystonia, similar to what occurs in levodopa-induced dyskinesia, and its decrease in a third, suggests that abnormal signal transduction in response to dopamine in the postsynaptic nigrostriatal pathway might be a point of convergence for dystonia and other hyperkinetic movement disorders, potentially offering common therapeutic targets. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Dystonia , Animals , Corpus Striatum/metabolism , Dopamine , Dystonia/chemically induced , Dystonia/genetics , Gene Knock-In Techniques , Mice , Mice, Inbred C57BL , Molecular Chaperones/metabolism , Phosphorylation
19.
J Parkinsons Dis ; 11(2): 757-765, 2021.
Article in English | MEDLINE | ID: mdl-33492247

ABSTRACT

BACKGROUND: Observational studies in Parkinson's disease (PD) have focused on relatively small numbers of research participants who are studied extensively. The Molecular Integration in Neurological Diagnosis Initiative at the University of Pennsylvania aims to characterize molecular and clinical features of PD in every patient in a large academic center. OBJECTIVE: To determine the feasibility and interest in a global-capture biomarker research protocol. Additionally, to describe the clinical characteristics and GBA and LRRK2 variant carrier status among participants. METHODS: All patients at UPenn with a clinical diagnosis of PD were eligible. Informed consent included options for access to the medical record, future recontact, and use of biosamples for additional studies. A blood sample and a completed questionnaire were obtained from participants. Targeted genotyping for four GBA and eight LRRK2 variants was performed, with plasma and DNA banked for future research. RESULTS: Between September 2018 and December 2019, 704 PD patients were approached for enrollment; 652 (92.6%) enrolled, 28 (3.97%) declined, and 24 (3.41%) did not meet eligibility criteria. Median age was 69 (IQR 63_75) years, disease duration was 5.41 (IQR 2.49_9.95) years, and 11.10%of the cohort was non-white. Disease risk-associated variants in GBA were identified in 39 participants (5.98%) and in LRRK2 in 16 participants (2.45%). CONCLUSIONS: We report the clinical and genetic characteristics of PD patients in an all-comers, global capture protocol from an academic center. Patient interest in participation and yield for identification of GBA and LRRK2 mutation carriers is high, demonstrating feasibility of PD clinic-wide molecular characterization.


Subject(s)
Parkinson Disease , Aged , Cohort Studies , Glucosylceramidase/genetics , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutation , Parkinson Disease/diagnosis , Parkinson Disease/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...