Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 25(16)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39201489

ABSTRACT

Triple-negative breast cancer (TNBC), accounting for 15-20% of all breast cancers, has one of the poorest prognoses and survival rates. Metastasis, a critical process in cancer progression, causes most cancer-related deaths, underscoring the need for alternative therapeutic approaches. This study explores the anti-migratory, anti-invasive, anti-tumoral, and antimetastatic effects of copper coordination compounds Casiopeína IIIia (CasIIIia) and Casiopeína IIgly (CasIIgly) on MDA-MB-231 and 4T1 breast carcinoma cell lines in vitro and in vivo. These emerging anticancer agents, mixed chelate copper(II) compounds, induce apoptosis by generating reactive oxygen species (ROS) and causing DNA damage. Whole-transcriptome analysis via gene expression arrays indicated that subtoxic concentrations of CasIIIia upregulate genes involved in metal response mechanisms. Casiopeínas® reduced TNBC cell viability dose-dependently and more efficiently than Cisplatin. At subtoxic concentrations (IC20), they inhibited random and chemotactic migration of MDA-MB-231 and 4T1 cells by 50-60%, similar to Cisplatin, as confirmed by transcriptome analysis. In vivo, CasIIIia and Cisplatin significantly reduced tumor growth, volume, and weight in a syngeneic breast cancer model with 4T1 cells. Furthermore, both compounds significantly decreased metastatic foci in treated mice compared to controls. Thus, CasIIIia and CasIIgly are promising chemotherapeutic candidates against TNBC.


Subject(s)
Antineoplastic Agents , Copper , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Animals , Humans , Female , Copper/chemistry , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Chelating Agents/pharmacology , Apoptosis/drug effects , Xenograft Model Antitumor Assays , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/therapeutic use , Cell Movement/drug effects , Reactive Oxygen Species/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Mice, Inbred BALB C , DNA Damage/drug effects
2.
FEBS Open Bio ; 12(5): 880-899, 2022 05.
Article in English | MEDLINE | ID: mdl-35170871

ABSTRACT

Cancer is a heterogeneous and multifactorial disease that causes high mortality throughout the world; therefore, finding the most effective therapies is a major research challenge. Currently, most anticancer drugs present a limited number of well-established targets, such as cell proliferation or death; however, it is important to consider that the worse progression of cancer toward pathological stages implies invasion and metastasis processes. Medicinal Inorganic Chemistry (MIC) is a young area that deals with the design, synthesis, characterization, preclinical evaluation, and mechanism of action of new inorganic compounds, called metallodrugs. The properties of metallic ions allow enriching of strategies for the design of new drugs, enabling the adjustment of physicochemical and stereochemical properties. Metallodrugs can adopt geometries, such as tetrahedral, octahedral, square planar, and square planar pyramid, which adjusts their arrangement and facilitates binding with a wide variety of targets. The redox properties of some metal ions can be modulated by the presence of the bound ligands to adjust their interaction, thereby opening a range of mechanisms of action. In this regard, the mechanisms of action that trigger the biological activity of metallodrugs have been generally identified by: (a) coordination of the metal to biomolecules (for instance, cisplatin binds to the N7 in DNA guanine, as Pt-N via coordination of the inhibition of enzymes); (b) redox-active; and (c) ROS production. For this reason, a series of metallodrugs can interact with several specific targets in the anti-invasive processes of cancer and can prevent metastasis. The structural base of several metal compounds shows great anticancer potential by inhibiting the signaling pathways related to cancer progression. In this minireview, we present the advances in the field of antimetastatic effects of metallodrugs.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Humans , Ions , Metals/chemistry , Metals/pharmacology , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL