Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 27(35): 43800-43812, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32740843

ABSTRACT

Human remains and corpses' cremation is an increasing practice worldwide alternative to burials, which have increased their cost and reduced spaces in cemeteries. Alike to other combustion processes, cremation produces pollutant emissions that contribute to worsen air quality in modern cities. A 6-month sampling campaign was performed in order to characterize emissions from corpse cremation in three different crematorium ovens and develop emission factors which were used to determine the population exposure to those pollutants during cremation activities applying a dispersion model. The main difference among crematoria was the inclusion or non-inclusion of controlled air supply devices. Using isokinetic samplings in the chimneys crematoria, emissions were measured and characterized with different chemical analyses. No significant differences were found in arsenic and metal concentrations among different crematories, although carbon monoxide, particles, elemental carbon, organic carbon, and polycyclic aromatic hydrocarbon concentrations in facilities without controlled air supply were up to seven times higher than those with controlled air supply. Nevertheless, these pollutants exceeded standards in all crematoria. Except for elemental and organic carbon concentration that correlated with corpse weight, other recorded cadaver characteristics bear no relation with pollutant emissions. Emission factors among different ovens did not present significant differences; then, they were used for dispersion modeling of particles and mercury emissions over Mexico City when 35 crematoria operate simultaneously through an hour showing that PM2.5 and Hg increase 0.01-1 µg m-3 and 0.01-0.1 ng m-3, respectively, in that scenario.


Subject(s)
Air Pollutants , Environmental Pollutants , Air Pollutants/analysis , Cities , Environmental Monitoring , Humans , Mexico , Particulate Matter/analysis , Vehicle Emissions/analysis
2.
J Air Waste Manag Assoc ; 68(8): 849-865, 2018 08.
Article in English | MEDLINE | ID: mdl-29652225

ABSTRACT

Biomass burning is a common agricultural practice, because it allows elimination of postharvesting residues; nevertheless, it involves an inefficient combustion process that generates atmospheric pollutants emission, which has implications on health and climate change. This work focuses on the estimation of emission factors (EFs) of PM2.5, PM10, organic carbon (OC), elemental carbon (EC), carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) of residues from burning alfalfa, barley, beans, cotton, maize, rice, sorghum, and wheat in Mexico. Chemical characteristics of the residues were determined to establish their relationship with EFs, as well as with the modified combustion efficiency (MCE). Essays were carried out in an open combustion chamber with isokinetic sampling, following modified EPA 201-A method. EFs did not present statistical differences among different varieties of the same crop, but were statistically different among different crops, showing that generic values of EFs for all the agricultural residues can introduce significant uncertainties when used for climatic and atmospheric pollutant inventories. EFs of PM2.5 ranged from 1.19 to 11.30 g kg-1, and of PM10 from 1.77 to 21.56 g kg-1. EFs of EC correlated with lignin content, whereas EFs of OC correlated inversely with carbon content. EFs of EC and OC in PM2.5 ranged from 0.15 to 0.41 g kg-1 and from 0.33 to 5.29 g kg-1, respectively, and in PM10, from 0.17 to 0.43 g kg-1 and from 0.54 to 11.06 g kg-1. CO2 represented the largest gaseous emissions volume with 1053.35-1850.82 g kg-1, whereas the lowest was CH4 with 1.61-5.59 g kg-1. CO ranged from 28.85 to 155.71 g kg-1, correlating inversely with carbon content and MCE. EFs were used to calculate emissions from eight agricultural residues burning in the country during 2016, to know the potential mitigation of climatic and atmospheric pollutants, provided this practice was banned. IMPLICATIONS: The emission factors of particles, short-lived climatic pollutants, and atmospheric pollutants from the crop residues burning of eight agricultural wastes crops, determined in this study using a standardized method, provides better knowledge of the emissions of those species in Latin America and other developing countries, and can be used as inputs in air quality models and climatic studies. The EFs will allow the development of more accurate inventories of aerosols and gaseous pollutants, which will lead to the design of effective mitigation strategies and planning processes for sustainable agriculture.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Crops, Agricultural , Particulate Matter/analysis , Agriculture , Air Pollutants/chemistry , Biomass , Carbon/analysis , Carbon Dioxide/analysis , Carbon Monoxide/analysis , Environmental Monitoring/methods , Methane/analysis , Mexico , Particulate Matter/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...