Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 13(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37685280

ABSTRACT

Although the association between risk factors and non-surgical root canal treatment (NSRCT) failure has been extensively studied, methods to predict the outcomes of NSRCT are in an early stage, and dentists currently make the treatment prognosis based mainly on their clinical experience. Since this involves different sources of error, we investigated the use of machine learning (ML) models as a second opinion to support the clinical decision on whether to perform NSRCT. We undertook a retrospective study of 119 confirmed and not previously treated Apical Periodontitis cases that received the same treatment by the same specialist. For each patient, we recorded the variables from a newly proposed data collection template and defined a binary outcome: Success if the lesion clears and failure otherwise. We conducted tests for detecting the association between the variables and the outcome and selected a set of variables as the initial inputs into four ML algorithms: Logistic Regression (LR), Random Forest (RF), Naive-Bayes (NB), and K Nearest Neighbors (KNN). According to our results, RF and KNN significantly improve (p-values < 0.05) the sensitivity and accuracy of the dentist's treatment prognosis. Taking our results as a proof of concept, we conclude that future randomized clinical trials are worth designing to test the clinical utility of ML models as a second opinion for NSRCT prognosis.

2.
Ecol Evol ; 12(11): e9472, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36340813

ABSTRACT

Despite the recent recognition of jellyfish as an important component of marine ecosystems and existing concerns on their potential population increase, they are rarely monitored at the appropriate spatial and temporal scales. Traditional jellyfish monitoring techniques are costly and generally restrict the spatial-temporal resolution limiting the quantity and quality of monitoring data. We introduce Jellytoring 2.0, an automatic recognition tool for jellyfish species based on convolutional neural networks (CNN). We trained Jellytoring 2.0 to identify 15 jellyfish species with a global distribution. Our aim is to offer Jellytoring 2.0 as an open-access tool to serve as the backbone for a system that promotes the creation of large-scale and long-term jellyfish monitoring data. Results reveal that Jellytoring 2.0 performed well in the identification of the 15 species with average precision values ranging between 90% and 99% for most of the species. Four of the species presented slightly lower values (75%-80%). Our system was trained on a relatively small dataset, implying that additional integration of image data will further improve the performance of the CNN. We show how the application of CNNs to image data can deliver a tool that will enable the cost-effective collection of jellyfish data on larger spatial and temporal scales. For Jellytoring 2.0 to become a truly global automatic identification system, we ask scientists and nonscientists to actively contribute with jellyfish image data to extend the number of species it can identify.

3.
Sensors (Basel) ; 22(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36365839

ABSTRACT

Nowadays, more frequently, it is necessary to perform underwater operations such as surveying an area or inspecting and intervening on industrial infrastructures such as offshore oil and gas rigs or pipeline networks. Recently, the use of Autonomous Underwater Vehicles (AUV) has grown as a way to automate these tasks, reducing risks and execution time. One of the used sensing modalities is vision, providing RGB high-quality information in the mid to low range, making it appropriate for manipulation or detail inspection tasks. This work presents the use of a deep neural network to perform pixel-wise 3D segmentation of pipes and valves on underwater point clouds generated using a stereo pair of cameras. In addition, two novel algorithms are built to extract information from the detected instances, providing pipe vectors, gripping points, the position of structural elements such as elbows or connections, and valve type and orientation. The information extracted on spatially referenced point clouds can be unified to form an information map of an inspected area. Results show outstanding performance on the network segmentation task, achieving a mean F1-score value of 88.0% at a pixel-wise level and of 95.3% at an instance level. The information extraction algorithm also showcased excellent metrics when extracting information from pipe instances and their structural elements and good enough metrics when extracting data from valves. Finally, the neural network and information algorithms are implemented on an AUV and executed in real-time, validating that the output information stream frame rate of 0.72 fps is high enough to perform manipulation tasks and to ensure full seabed coverage during inspection tasks. The used dataset, along with a trained model and the information algorithms, are provided to the scientific community.


Subject(s)
Algorithms , Neural Networks, Computer , Information Storage and Retrieval
4.
Front Neuroanat ; 16: 817903, 2022.
Article in English | MEDLINE | ID: mdl-35370569

ABSTRACT

The morphological analysis of dendritic spines is an important challenge for the neuroscientific community. Most state-of-the-art techniques rely on user-supervised algorithms to segment the spine surface, especially those designed for light microscopy images. Therefore, processing large dendritic branches is costly and time-consuming. Although deep learning (DL) models have become one of the most commonly used tools in image segmentation, they have not yet been successfully applied to this problem. In this article, we study the feasibility of using DL models to automatize spine segmentation from confocal microscopy images. Supervised learning is the most frequently used method for training DL models. This approach requires large data sets of high-quality segmented images (ground truth). As mentioned above, the segmentation of microscopy images is time-consuming and, therefore, in most cases, neuroanatomists only reconstruct relevant branches of the stack. Additionally, some parts of the dendritic shaft and spines are not segmented due to dyeing problems. In the context of this research, we tested the most successful architectures in the DL biomedical segmentation field. To build the ground truth, we used a large and high-quality data set, according to standards in the field. Nevertheless, this data set is not sufficient to train convolutional neural networks for accurate reconstructions. Therefore, we implemented an automatic preprocessing step and several training strategies to deal with the problems mentioned above. As shown by our results, our system produces a high-quality segmentation in most cases. Finally, we integrated several postprocessing user-supervised algorithms in a graphical user interface application to correct any possible artifacts.

5.
Sensors (Basel) ; 20(6)2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32204330

ABSTRACT

During the past decades, the composition and distribution of marine species have changed due to multiple anthropogenic pressures. Monitoring these changes in a cost-effective manner is of high relevance to assess the environmental status and evaluate the effectiveness of management measures. In particular, recent studies point to a rise of jellyfish populations on a global scale, negatively affecting diverse marine sectors like commercial fishing or the tourism industry. Past monitoring efforts using underwater video observations tended to be time-consuming and costly due to human-based data processing. In this paper, we present Jellytoring, a system to automatically detect and quantify different species of jellyfish based on a deep object detection neural network, allowing us to automatically record jellyfish presence during long periods of time. Jellytoring demonstrates outstanding performance on the jellyfish detection task, reaching an F1 score of 95.2%; and also on the jellyfish quantification task, as it correctly quantifies the number and class of jellyfish on a real-time processed video sequence up to a 93.8% of its duration. The results of this study are encouraging and provide the means towards a efficient way to monitor jellyfish, which can be used for the development of a jellyfish early-warning system, providing highly valuable information for marine biologists and contributing to the reduction of jellyfish impacts on humans.


Subject(s)
Deep Learning , Ecosystem , Environmental Monitoring , Scyphozoa/physiology , Animals , Humans , Time
SELECTION OF CITATIONS
SEARCH DETAIL
...