Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lasers Surg Med ; 26(1): 67-75, 2000.
Article in English | MEDLINE | ID: mdl-10637005

ABSTRACT

BACKGROUND AND OBJECTIVE: The size (0.5-1.0 cm) of early nonpalpable breast tumors currently detected by mammography and confirmed by stereotactic core biopsy is of the order of the penetration depth of near infrared photons in breast tissue. In principle, stereotactically biopsied tumors, therefore, could be safely and efficiently treated with laser thermotherapy. The aim of the current study is to confirm the controlled heating produced by clinically relevant power levels delivered with an interstitial laser fiber optic probe adapted for use with stereotactic mammography and biopsy procedures. STUDY DESIGN/MATERIALS AND METHODS: Temperature increases and the resultant thermal field produced by the irradiation of ex vivo (porcine and human) and in vivo (porcine) tissue models appropriate to the treatment of human breast tissue by using cw Nd:YAG laser radiation delivered with a interstitial fiber optic probe with a quartz diffusing tip, were recorded with an array of fifteen 23-gauge needle thermocouple probes connected to a laboratory computer-based data acquisition system. RESULTS: By using a stepwise decreasing power cycle to avoid tissue charring, acceptably symmetric thermal fields of repeatable volumetric dimensions were obtained. Reproducible thermal gradients and predictable tissue necrosis without carbonization could be induced in a 3-cm-diameter region around the fiber probe during a single treatment lasting only 3 minutes. The time-dependences of the temperature rise of the thermocouples surrounding the LITT probe were quantitatively modeled with simple linear functions during the applied laser heating cycles. CONCLUSION: Analysis of our experimental results show that reproducible, symmetric and predictable volumetric temperature increases in time can be reliably produced by interstitial laser thermotherapy.


Subject(s)
Adipose Tissue/radiation effects , Breast Neoplasms/therapy , Hyperthermia, Induced/methods , Laser Therapy , Animals , Humans , Swine
2.
Lasers Surg Med ; 23(2): 94-103, 1998.
Article in English | MEDLINE | ID: mdl-9738544

ABSTRACT

BACKGROUND AND OBJECTIVE: The purpose of this work was to quantify the magnitude of an artifact induced by stainless steel thermocouple probes in temperature measurements made in situ during experimental laser interstitial thermo-therapy (LITT). A procedure for correction of this observational error is outlined. STUDY DESIGN/MATERIALS AND METHODS: A CW Nd:YAG laser system emitting 20W for 25-30 s delivered through a fiber-optic probe was used to create localized heating. The temperature field around the fiber-optic probe during laser irradiation was measured every 0.3 s in air, water, 0.4% intralipid solution, and fatty cadaver pig tissue, with a field of up to fifteen needle thermocouple probes. RESULTS: Direct absorption of Nd:YAG laser radiation by the thermocouple probes induced an overestimation of the temperature, ranging from 1.8 degrees C to 118.6 degrees C in air, 2.2 degrees C to 9.9 degrees C in water, 0.7 C to 4.7 C in intralipid and 0.3 C to 17.9 C in porcine tissue after irradiation at 20W for 30 s and depending on the thermocouple location. The artifact in porcine tissue was removed by applying exponential and linear fits to the measured temperature curves. CONCLUSION: Light absorption by thermocouple probes can induce a significant artifact in the measurement of laser-induced temperature increases. When the time constant of the thermocouple effect is much smaller than the thermal relaxation time of the surrounding tissue, the artifact can be accurately quantified. During LITT experiments where temperature differences of a few degrees are significant, the thermocouple artifact must be removed in order to be able accurately to predict the treatment outcome.


Subject(s)
Hyperthermia, Induced/methods , Laser Therapy , Temperature , Animals , Artifacts , Biophysical Phenomena , Biophysics , Fiber Optic Technology , Hyperthermia, Induced/instrumentation , Models, Biological , Optical Fibers , Stainless Steel , Swine , Water
3.
J Am Coll Surg ; 186(3): 284-92, 1998 Mar.
Article in English | MEDLINE | ID: mdl-9510259

ABSTRACT

BACKGROUND: This investigation describes the preclinical development of a laser fiberoptic interstitial delivery system for the thermal destruction of small breast cancers. We propose adaptation of this technology to stereotactic mammographic instrumentation currently employed for diagnostic core biopsy to thermally ablate a site of disease with maximal treatment efficacy, minimal observable superficial change, reduced patient trauma, and lowered overall treatment costs. STUDY DESIGN: Laser hyperthermia is a clinical modality that seeks to achieve tumor destruction through controlled tissue heating. The advantage of laser-induced hyperthermia over traditionally used heat sources such as ultrasound, microwave, or radiowave radiation lies in the ability to focus heat localization to the specific tumor tissue site. Neodymium:yttrium aluminum garnet (Nd:YAG) laser light transmitted through a fiberoptic cable to a diffusing quartz tip can induce such temperature increases leading to localized tissue destruction. Because breast cancer occurs with greatest frequency in the mature woman whose breast tissue has undergone glandular involution with fatty replacement, this study concentrates on determining the resultant laser energy heat distribution within fat and fibrofatty tissue. This investigation studied the time-temperature responses of ex vivo human breast and porcine fibrofatty tissue, which led to an in vivo subcutaneous porcine model for the practical demonstration of a laser hyperthermia treatment of small volumes of porcine mammary chain tissue. RESULTS: Spatial recordings of the resultant temperature fields through time exhibited similar, reproducible thermal profiles in both ex vivo human breast and subcutaneous porcine fat. In vivo laser-produced temperature fields in porcine subcutaneous fat were comparable to those in the ex vivo analyses, and showed a histologically, sharply defined, and controllable volume of necrosis with no injury to adjacent tissues or to overlying skin. CONCLUSIONS: Interstitially placed, fiberoptically delivered Nd:YAG laser energy is capable of controlled tissue denaturation to a defined volume for the treatment of small breast cancers. It is hoped that this minimally invasive approach, with further investigation and refinement, may lead to the effective treatment of small, well-defined breast cancers that are commonly diagnosed through stereographic mammography and stereotactic core biopsy. The juxtaposition of such a localized treatment modality with these increasingly used diagnostic tools is of considerable promise.


Subject(s)
Breast Neoplasms/therapy , Hyperthermia, Induced/methods , Adipose Tissue/pathology , Animals , Breast/pathology , Female , Fiber Optic Technology/instrumentation , Humans , Hyperthermia, Induced/instrumentation , Laser Therapy , Mammary Glands, Animal/pathology , Models, Structural , Pilot Projects , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...