Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomaterials ; 299: 122163, 2023 08.
Article in English | MEDLINE | ID: mdl-37236137

ABSTRACT

Bone is the most common target of metastasis in breast cancer and prostate cancer, leading to significant mortality due to lack of effective treatments. The discovery of novel therapies has been hampered by a lack of physiologically relevant in vitro models that can mimic key clinical features of bone metastases. To fill this critical gap, here we report spatially patterned, tissue engineered 3D models of breast cancer and prostate cancer bone metastasis which mimic bone-specific invasion, cancer aggressiveness, cancer-induced dysregulation of bone remodeling, and in vivo drug response. We demonstrate the potential of integrating such 3D models with single-cell RNA sequencing to identify key signaling drivers of cancer metastasis to bone. Together, these results validate that spatially patterned 3D bone metastasis models mimic key clinical features of bone metastasis and can serve as a novel research tool to elucidate bone metastasis biology and expedite drug discovery.


Subject(s)
Bone Neoplasms , Breast Neoplasms , Prostatic Neoplasms , Male , Humans , Tissue Engineering/methods , Bone Neoplasms/pathology , Breast Neoplasms/pathology , Prostatic Neoplasms/pathology , Cell Line, Tumor
2.
Adv Healthc Mater ; 11(17): e2200768, 2022 09.
Article in English | MEDLINE | ID: mdl-35767377

ABSTRACT

Osteosarcoma (OS) is an aggressive bone cancer for which survival has not improved over three decades. While biomaterials have been widely used to engineer 3D soft-tissue tumor models, the potential of engineering 3D biomaterials-based OS models for comprehensive interrogation of OS pathology and drug discovery remains untapped. Bone is characterized by high mineral content, yet the role of bone mineral in OS progression and drug response remains unknown. Here, a microribbon-based OS model with bone-mimicking compositions is developed to elucidate the role of 3D culture and hydroxyapatite in OS signaling and drug response. The results reveal that hydroxyapatite in 3D is critical to support retention of OS signaling and drug resistance similar to patient tissues and mouse orthotopic tumors. The physiological relevance of this 3D model is validated using four established OS cell lines, seven patient-derived xenograft (PDX) cell lines and two animal models. Integrating 3D OS PDX models with RNA-sequencing identified 3D-specific druggable target, which predicts drug response in mouse orthotopic model. These results establish microribbon-based 3D OS models as a novel experimental tool to enable discovery of novel therapeutics that would be otherwise missed with 2D model and may serve as platforms to study patient-specific OS heterogeneity and drug resistance mechanisms.


Subject(s)
Bone Neoplasms , Osteosarcoma , Animals , Biocompatible Materials , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Cell Line, Tumor , Cues , Drug Discovery , Humans , Hydroxyapatites , Mice , Minerals , Osteosarcoma/pathology
3.
Acta Biomater ; 99: 18-32, 2019 11.
Article in English | MEDLINE | ID: mdl-31419564

ABSTRACT

Malignant bone tumors are aggressive neoplasms which arise from bone tissue or as a result of metastasis. The most prevalent types of cancer, such as breast, prostate, and lung cancer, all preferentially metastasize to bone, yet the role of the bone niche in promoting cancer progression remains poorly understood. Tissue engineering has the potential to bridge this knowledge gap by providing 3D in vitro systems that can be specifically designed to mimic key properties of the bone niche in a more physiologically relevant context than standard 2D culture. Elucidating the crucial components of the bone niche that recruit metastatic cells, support tumor growth, and promote cancer-induced destruction of bone tissue would support efforts for preventing and treating these devastating malignancies. In this review, we summarize recent efforts focused on developing in vitro 3D models of primary bone cancer and bone metastasis using tissue engineering approaches. Such 3D in vitro models can enable the identification of effective therapeutic targets and facilitate high-throughput drug screening to effectively treat bone cancers. STATEMENT OF SIGNIFICANCE: Biomaterials-based 3D culture have been traditionally used for tissue regeneration. Recent research harnessed biomaterials to create 3D in vitro cancer models, with demonstrated advantages over conventional 2D culture in recapitulating tumor progression and drug response in vivo. However, previous work has been largely limited to modeling soft tissue cancer, such as breast cancer and brain cancer. Unlike soft tissues, bone is characterized with high stiffness and mineral content. Primary bone cancer affects mostly children with poor treatment outcomes, and bone is the most common site of cancer metastasis. Here we summarize emerging efforts on engineering 3D bone cancer models using tissue engineering approaches, and future directions needed to further advance this relatively new research area.


Subject(s)
Bone Neoplasms/pathology , Bone Neoplasms/secondary , Tissue Engineering/methods , Biocompatible Materials , Biomimetics , Breast Neoplasms/pathology , Disease Progression , Female , Humans , Hydrogels/chemistry , Imaging, Three-Dimensional , Male , Neoplasm Metastasis , Prostatic Neoplasms/pathology , Spheroids, Cellular , Tissue Scaffolds
4.
Tissue Eng Part A ; 24(13-14): 1148-1156, 2018 07.
Article in English | MEDLINE | ID: mdl-29368582

ABSTRACT

Synthetic biomaterials that create a dynamic calcium (Ca2+)-, phosphate (PO43-) ion-, and calcium phosphate (CaP)-rich microenvironment, similar to that found in native bone tissue, have been shown to promote osteogenic commitment of stem cells in vitro and in vivo. The intrinsic osteoconductivity and osteoinductivity of such biomaterials make them promising bone grafts for the treatment of bone defects. We thus aimed to evaluate the potential of mineralized biomaterials to induce bone repair of a critical-sized cranial defect in the absence of exogenous cells and growth factors. Our results demonstrate that the mineralized biomaterial alone can support complete bone formation within critical-sized bone defects through recruitment of endogenous cells and neo-bone tissue formation in mice. The newly formed bone tissue recapitulated many key characteristics of native bone such as formation of bone minerals reaching similar bone mineral density, presence of bone-forming osteoblasts and tartrate-resistant acid phosphatase-expressing osteoclasts, as well as vascular networks. Biomaterials that recruit endogenous cells and provide a tissue-specific microenvironment to modulate cellular behavior and support generation of functional tissues are a key step forward in moving bench-side tissue engineering approaches to the bedside. Such tissue engineering strategies could eventually pave the path toward readily available therapies that significantly reduce patient cost of care and improve overall clinical outcomes.


Subject(s)
Biocompatible Materials/pharmacology , Calcification, Physiologic/drug effects , Skull/pathology , Wound Healing/drug effects , Animals , Biomarkers/metabolism , Implants, Experimental , Mice, Inbred C57BL , Neovascularization, Physiologic/drug effects , Osteogenesis/drug effects , Skull/drug effects , X-Ray Microtomography
5.
Gels ; 2(3)2016 Aug 03.
Article in English | MEDLINE | ID: mdl-30674152

ABSTRACT

The extracellular matrix (ECM) is the non-cellular component of tissue that provides physical scaffolding to cells. Emerging studies have shown that beyond structural support, the ECM provides tissue-specific biochemical and biophysical cues that are required for tissue morphogenesis and homeostasis. Hydrogel-based platforms have played a key role in advancing our knowledge of the role of ECM in regulating various cellular functions. Synthetic hydrogels allow for tunable biofunctionality, as their material properties can be tailored to mimic those of native tissues. This review discusses current advances in the design of hydrogels with defined physical and chemical properties. We also highlight research findings that demonstrate the impact of matrix properties on directing stem cell fate, such as self-renewal and differentiation. Recent and future efforts towards understanding cell-material interactions will not only advance our basic understanding, but will also help design tissue-specific matrices and delivery systems to transplant stem cells and control their response in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL
...