Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 174
Filter
1.
Int J Surg ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833337

ABSTRACT

BACKGROUND: Warfarin is a common oral anticoagulant, and its effects vary widely among individuals. Numerous dose-prediction algorithms have been reported based on cross-sectional data generated via multiple linear regression or machine learning. This study aimed to construct an information fusion perturbation theory and machine learning prediction model of warfarin blood levels based on clinical longitudinal data from cardiac surgery patients. METHODS AND MATERIAL: The data of 246 patients were obtained from electronic medical records. Continuous variables were processed by calculating the distance of the raw data with the moving average (MA ∆vki(sj)), and categorical variables in different attribute groups were processed using Euclidean distance (ED ǁ∆vk(sj)ǁ). Regression and classification analyses were performed on the raw data, MA ∆vki(sj), and ED ǁ∆vk(sj)ǁ. Different machine-learning algorithms were chosen for the STATISTICA and WEKA software. RESULTS: The random forest (RF) algorithm was the best for predicting continuous outputs using the raw data. The correlation coefficients of the RF algorithm were 0.978 and 0.595 for the training and validation sets, respectively, and the mean absolute errors were 0.135 and 0.362 for the training and validation sets, respectively. The proportion of ideal predictions of the RF algorithm was 59.0%. General discriminant analysis (GDA) was the best algorithm for predicting the categorical outputs using the MA ∆vki(sj) data. The GDA algorithm's total true positive rate (TPR) was 95.4% and 95.6% for the training and validation sets, respectively, with MA ∆vki(sj) data. CONCLUSIONS: An information fusion perturbation theory and machine learning model for predicting warfarin blood levels was established. A model based on the RF algorithm could be used to predict the target international normalized ratio (INR), and a model based on the GDA algorithm could be used to predict the probability of being within the target INR range under different clinical scenarios.

2.
Beilstein J Nanotechnol ; 15: 535-555, 2024.
Article in English | MEDLINE | ID: mdl-38774585

ABSTRACT

Neurodegenerative diseases are characterized by slowly progressing neuronal cell death. Conventional drug treatment strategies often fail because of poor solubility, low bioavailability, and the inability of the drugs to effectively cross the blood-brain barrier. Therefore, the development of new neurodegenerative disease drugs (NDDs) requires immediate attention. Nanoparticle (NP) systems are of increasing interest for transporting NDDs to the central nervous system. However, discovering effective nanoparticle neuronal disease drug delivery systems (N2D3Ss) is challenging because of the vast number of combinations of NP and NDD compounds, as well as the various assays involved. Artificial intelligence/machine learning (AI/ML) algorithms have the potential to accelerate this process by predicting the most promising NDD and NP candidates for assaying. Nevertheless, the relatively limited amount of reported data on N2D3S activity compared to assayed NDDs makes AI/ML analysis challenging. In this work, the IFPTML technique, which combines information fusion (IF), perturbation theory (PT), and machine learning (ML), was employed to address this challenge. Initially, we conducted the fusion into a unified dataset comprising 4403 NDD assays from ChEMBL and 260 NP cytotoxicity assays from journal articles. Through a resampling process, three new working datasets were generated, each containing 500,000 cases. We utilized linear discriminant analysis (LDA) along with artificial neural network (ANN) algorithms, such as multilayer perceptron (MLP) and deep learning networks (DLN), to construct linear and non-linear IFPTML models. The IFPTML-LDA models exhibited sensitivity (Sn) and specificity (Sp) values in the range of 70% to 73% (>375,000 training cases) and 70% to 80% (>125,000 validation cases), respectively. In contrast, the IFPTML-MLP and IFPTML-DLN achieved Sn and Sp values in the range of 85% to 86% for both training and validation series. Additionally, IFPTML-ANN models showed an area under the receiver operating curve (AUROC) of approximately 0.93 to 0.95. These results indicate that the IFPTML models could serve as valuable tools in the design of drug delivery systems for neurosciences.

3.
Environ Sci Technol ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797941

ABSTRACT

In recent years, alternative animal testing methods such as computational and machine learning approaches have become increasingly crucial for toxicity testing. However, the complexity and scarcity of available biomedical data challenge the development of predictive models. Combining nonlinear machine learning together with multicondition descriptors offers a solution for using data from various assays to create a robust model. This work applies multicondition descriptors (MCDs) to develop a QSTR (Quantitative Structure-Toxicity Relationship) model based on a large toxicity data set comprising more than 80,000 compounds and 59 different end points (122,572 data points). The prediction capabilities of developed single-task multi-end point machine learning models as well as a novel data analysis approach with the use of Convolutional Neural Networks (CNN) are discussed. The results show that using MCDs significantly improves the model and using them with CNN-1D yields the best result (R2train = 0.93, R2ext = 0.70). Several structural features showed a high level of contribution to the toxicity, including van der Waals surface area (VSA), number of nitrogen-containing fragments (nN+), presence of S-P fragments, ionization potential, and presence of C-N fragments. The developed models can be very useful tools to predict the toxicity of various compounds under different conditions, enabling quick toxicity assessment of new compounds.

4.
Biomed Pharmacother ; 174: 116602, 2024 May.
Article in English | MEDLINE | ID: mdl-38636396

ABSTRACT

The development of new molecules for the treatment of calmodulin related cardiovascular or neurodegenerative diseases is an interesting goal. In this work, we introduce a novel strategy with four main steps: (1) chemical synthesis of target molecules, (2) Förster Resonance Energy Transfer (FRET) biosensor development and in vitro biological assay of new derivatives, (3) Cheminformatics models development and in vivo activity prediction, and (4) Docking studies. This strategy is illustrated with a case study. Firstly, a series of 4-substituted Riluzole derivatives 1-3 were synthetized through a strategy that involves the construction of the 4-bromoriluzole framework and its further functionalization via palladium catalysis or organolithium chemistry. Next, a FRET biosensor for monitoring Ca2+-dependent CaM-ligands interactions has been developed and used for the in vitro assay of Riluzole derivatives. In particular, the best inhibition (80%) was observed for 4-methoxyphenylriluzole 2b. Besides, we trained and validated a new Networks Invariant, Information Fusion, Perturbation Theory, and Machine Learning (NIFPTML) model for predicting probability profiles of in vivo biological activity parameters in different regions of the brain. Next, we used this model to predict the in vivo activity of the compounds experimentally studied in vitro. Last, docking study conducted on Riluzole and its derivatives has provided valuable insights into their binding conformations with the target protein, involving calmodulin and the SK4 channel. This new combined strategy may be useful to reduce assay costs (animals, materials, time, and human resources) in the drug discovery process of calmodulin inhibitors.


Subject(s)
Biosensing Techniques , Calmodulin , Molecular Docking Simulation , Neuroprotective Agents , Riluzole , Calmodulin/antagonists & inhibitors , Calmodulin/metabolism , Biosensing Techniques/methods , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Riluzole/pharmacology , Riluzole/chemical synthesis , Riluzole/chemistry , Fluorescence Resonance Energy Transfer , Animals , Humans , Machine Learning
5.
J Chem Inf Model ; 64(6): 1841-1852, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38466369

ABSTRACT

The Flaviviridae family consists of single-stranded positive-sense RNA viruses, which contains the genera Flavivirus, Hepacivirus, Pegivirus, and Pestivirus. Currently, there is an outbreak of viral diseases caused by this family affecting millions of people worldwide, leading to significant morbidity and mortality rates. Advances in computational chemistry have greatly facilitated the discovery of novel drugs and treatments for diseases associated with this family. Chemoinformatic techniques, such as the perturbation theory machine learning method, have played a crucial role in developing new approaches based on ML models that can effectively aid drug discovery. The IFPTML models have shown its capability to handle, classify, and process large data sets with high specificity. The results obtained from different models indicates that this methodology is proficient in processing the data, resulting in a reduction of the false positive rate by 4.25%, along with an accuracy of 83% and reliability of 92%. These values suggest that the model can serve as a computational tool in assisting drug discovery efforts and the development of new treatments against Flaviviridae family diseases.


Subject(s)
Flaviviridae Infections , Flaviviridae , Humans , Flaviviridae/genetics , Reproducibility of Results , Drug Discovery , Computer Simulation
6.
Phytomedicine ; 128: 155479, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493714

ABSTRACT

BACKGROUND: Warfarin is a widely prescribed anticoagulant in the clinic. It has a more considerable individual variability, and many factors affect its variability. Mathematical models can quantify the quantitative impact of these factors on individual variability. PURPOSE: The aim is to comprehensively analyze the advanced warfarin dosing algorithm based on pharmacometrics and machine learning models of personalized warfarin dosage. METHODS: A bibliometric analysis of the literature retrieved from PubMed and Scopus was performed using VOSviewer. The relevant literature that reported the precise dosage of warfarin calculation was retrieved from the database. The multiple linear regression (MLR) algorithm was excluded because a recent systematic review that mainly reviewed this algorithm has been reported. The following terms of quantitative systems pharmacology, mechanistic model, physiologically based pharmacokinetic model, artificial intelligence, machine learning, pharmacokinetic, pharmacodynamic, pharmacokinetics, pharmacodynamics, and warfarin were added as MeSH Terms or appearing in Title/Abstract into query box of PubMed, then humans and English as filter were added to retrieve the literature. RESULTS: Bibliometric analysis revealed important co-occuring MeShH and index keywords. Further, the United States, China, and the United Kingdom were among the top countries contributing in this domain. Some studies have established personalized warfarin dosage models using pharmacometrics and machine learning-based algorithms. There were 54 related studies, including 14 pharmacometric models, 31 artificial intelligence models, and 9 model evaluations. Each model has its advantages and disadvantages. The pharmacometric model contains biological or pharmacological mechanisms in structure. The process of pharmacometric model development is very time- and labor-intensive. Machine learning is a purely data-driven approach; its parameters are more mathematical and have less biological interpretation. However, it is faster, more efficient, and less time-consuming. Most published models of machine learning algorithms were established based on cross-sectional data sourced from the database. CONCLUSION: Future research on personalized warfarin medication should focus on combining the advantages of machine learning and pharmacometrics algorithms to establish a more robust warfarin dosage algorithm. Randomized controlled trials should be performed to evaluate the established algorithm of warfarin dosage. Moreover, a more user-friendly and accessible warfarin precision medicine platform should be developed.


Subject(s)
Anticoagulants , Machine Learning , Precision Medicine , Warfarin , Warfarin/pharmacokinetics , Warfarin/pharmacology , Anticoagulants/pharmacokinetics , Anticoagulants/pharmacology , Anticoagulants/administration & dosage , Humans , Precision Medicine/methods , Bibliometrics , Algorithms
7.
Adv Sci (Weinh) ; 11(13): e2305177, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38258479

ABSTRACT

Familial hypercholesterolemia (FH) is an inherited metabolic disease affecting cholesterol metabolism, with 90% of cases caused by mutations in the LDL receptor gene (LDLR), primarily missense mutations. This study aims to integrate six commonly used predictive software to create a new model for predicting LDLR mutation pathogenicity and mapping hot spot residues. Six predictive-software are selected: Polyphen-2, SIFT, MutationTaster, REVEL, VARITY, and MLb-LDLr. Software accuracy is tested with the characterized variants annotated in ClinVar and, by bioinformatic and machine learning techniques all models are integrated into a more accurate one. The resulting optimized model presents a specificity of 96.71% and a sensitivity of 98.36%. Hot spot residues with high potential of pathogenicity appear across all domains except for the signal peptide and the O-linked domain. In addition, translating this information into 3D structure of the LDLr highlights potentially pathogenic clusters within the different domains, which may be related to specific biological function. The results of this work provide a powerful tool to classify LDLR pathogenic variants. Moreover, an open-access guide user interface (OptiMo-LDLr) is provided to the scientific community. This study shows that combination of several predictive software results in a more accurate prediction to help clinicians in FH diagnosis.


Subject(s)
Hyperlipoproteinemia Type II , Humans , Phenotype , Mutation , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/genetics , Receptors, LDL/genetics , Receptors, LDL/metabolism , Computer Simulation
8.
J Cheminform ; 16(1): 9, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38254200

ABSTRACT

The enantioselective Brønsted acid-catalyzed α-amidoalkylation reaction is a useful procedure is for the production of new drugs and natural products. In this context, Chiral Phosphoric Acid (CPA) catalysts are versatile catalysts for this type of reactions. The selection and design of new CPA catalysts for different enantioselective reactions has a dual interest because new CPA catalysts (tools) and chiral drugs or materials (products) can be obtained. However, this process is difficult and time consuming if approached from an experimental trial and error perspective. In this work, an Heuristic Perturbation-Theory and Machine Learning (HPTML) algorithm was used to seek a predictive model for CPA catalysts performance in terms of enantioselectivity in α-amidoalkylation reactions with R2 = 0.96 overall for training and validation series. It involved a Monte Carlo sampling of > 100,000 pairs of query and reference reactions. In addition, the computational and experimental investigation of a new set of intermolecular α-amidoalkylation reactions using BINOL-derived N-triflylphosphoramides as CPA catalysts is reported as a case of study. The model was implemented in a web server called MATEO: InterMolecular Amidoalkylation Theoretical Enantioselectivity Optimization, available online at: https://cptmltool.rnasa-imedir.com/CPTMLTools-Web/mateo . This new user-friendly online computational tool would enable sustainable optimization of reaction conditions that could lead to the design of new CPA catalysts along with new organic synthesis products.

9.
Diseases ; 11(4)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37987264

ABSTRACT

Leishmaniasis is a neglected tropical illness with a wide variety of clinical signs ranging from visceral to cutaneous symptoms, resulting in millions of new cases and thousands of fatalities reported annually. This article provides a bibliometric analysis of the main authors' contributions, institutions, and nations in terms of productivity, citations, and bibliographic linkages to the application of nanoparticles (NPs) for the treatment of leishmania. The study is based on a sample of 524 Scopus documents from 1991 to 2022. Utilising the Bibliometrix R-Tool version 4.0 and VOSviewer software, version 1.6.17 the analysis was developed. We identified crucial subjects associated with the application of NPs in the field of antileishmanial development (NPs and drug formulation for leishmaniasis treatment, animal models, and experiments). We selected research topics that were out of date and oversaturated. Simultaneously, we proposed developing subjects based on multiple analyses of the corpus of published scientific literature (title, abstract, and keywords). Finally, the technique used contributed to the development of a broader and more specific "big picture" of nanomedicine research in antileishmanial studies for future projects.

10.
Comput Biol Med ; 155: 106638, 2023 03.
Article in English | MEDLINE | ID: mdl-36764155

ABSTRACT

Machine learning (ML) methods are used in cheminformatics processes to predict the activity of an unknown drug and thus discover new potential antibacterial drugs. This article conducts a bibliometric study to analyse the contributions of leading authors, universities/organisations and countries in terms of productivity, citations and bibliographic linkage. A sample of 1596 Scopus documents for the period 2006-2022 is the basis of the study. In order to develop the analysis, bibliometrix R-Tool and VOSviewer software were used. We determined essential topics related to the application of ML in the field of antibacterial development (Computer model in antibacterial drug design, and Learning algorithms and systems for forecasting). We identified obsolete and saturated areas of research. At the same time, we proposed emerging topics according to the various analyses carried out on the corpus of published scientific literature (Title, abstract and keywords). Finally, the applied methodology contributed to building a broader and more specific "big picture" of ML research in antibacterial studies for the focus of future projects.


Subject(s)
Algorithms , Anti-Bacterial Agents , Bibliometrics , Cheminformatics , Machine Learning
11.
Curr Comput Aided Drug Des ; 18(7): 469-479, 2022.
Article in English | MEDLINE | ID: mdl-36177632

ABSTRACT

INTRODUCTION: This report proposes the application of a new Machine Learning algorithm called Fuzzy Unordered Rules Induction Algorithm (FURIA)-C in the classification of druglike compounds with antidiabetic inhibitory ability toward the main two pharmacological targets: α-amylase and α-glucosidase. METHODS: The two obtained QSAR models were tested for classification capability, achieving satisfactory accuracy scores of 94.5% and 96.5%, respectively. Another important outcome was to achieve various α-amylase and α-glucosidase fuzzy rules with high Certainty Factor values. Fuzzyrules derived from the training series and active classification rules were interpreted. An important external validation step, comparing our method with those previously reported, was also included. RESULTS: The Holm's test comparison showed significant differences (p-value<0.05) between FURIA-C, Linear Discriminating Analysis (LDA), and Bayesian Networks, the former beating the two latter according to the relative ranking score of the Holm's test. CONCLUSION: From these results, the FURIA-C algorithm could be used as a cutting-edge technique to predict (classify or screen) the α-amylase and α-glucosidase inhibitory activity of new compounds and hence speed up the discovery of new potent multi-target antidiabetic agents.


Subject(s)
Glycoside Hydrolase Inhibitors , alpha-Amylases , Glycoside Hydrolase Inhibitors/pharmacology , alpha-Amylases/metabolism , alpha-Glucosidases , Quantitative Structure-Activity Relationship , Bayes Theorem , Hypoglycemic Agents/pharmacology
12.
Environ Res ; 214(Pt 3): 113984, 2022 11.
Article in English | MEDLINE | ID: mdl-35981614

ABSTRACT

Globally, pesticides are toxic substances with wide applications. However, the widespread use of pesticides has received increasing attention from regulatory agencies due to their various acute and chronic effects on multiple organisms. In this study, Quantitative Structure-Toxicity Relationship (QSTR) models were established using Multiple Linear Regression (MLR) and five Machine Learning (ML) algorithms to predict pesticide toxicity in Americamysis bahia. The most influential descriptors included in the MLR model are RBF, JGI2, nCbH, nRCOOR, nRSR, nPO4 and 'Cl-090', with positive contributions to the dependent variable (negative decimal logarithm of median lethal concentration at 96-h). The Random Forest (RF) regression model was superior amongst the five ML models. We observed higher values of R2 (0.812) and lower values of RMSE (0.595) and MAE (0.462) in the cross-validation training set and external validation set. Similarly, this study had a high level of fitness and was internally robust and externally predictive compared to models presented in similar studies. The results suggest that the developed QSTR models are suitable for reliably predicting the aquatic toxicity of structurally diverse pesticides and can be used for screening, prioritising new pesticides, filling data gaps and overcoming the limitations of in vivo and in vitro tests.


Subject(s)
Pesticides , Brazil , Linear Models , Nonlinear Dynamics , Pesticides/toxicity , Quantitative Structure-Activity Relationship
13.
J Chem Inf Model ; 62(16): 3928-3940, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35946598

ABSTRACT

In this work, the SOFT.PTML tool has been used to pre-process a ChEMBL dataset of pre-clinical assays of antileishmanial compound candidates. A comparative study of different ML algorithms, such as logistic regression (LOGR), support vector machine (SVM), and random forests (RF), has shown that the IFPTML-LOGR model presents excellent values of specificity and sensitivity (81-98%) in training and validation series. The use of this software has been illustrated with a practical case study focused on a series of 28 derivatives of 2-acylpyrroles 5a,b, obtained through a Pd(II)-catalyzed C-H radical acylation of pyrroles. Their in vitro leishmanicidal activity against visceral (L. donovani) and cutaneous (L. amazonensis) leishmaniasis was evaluated finding that compounds 5bc (IC50 = 30.87 µM, SI > 10.17) and 5bd (IC50 = 16.87 µM, SI > 10.67) were approximately 6-fold more selective than the drug of reference (miltefosine) in in vitro assays against L. amazonensis promastigotes. In addition, most of the compounds showed low cytotoxicity, CC50 > 100 µg/mL in J774 cells. Interestingly, the IFPMTL-LOGR model predicts correctly the relative biological activity of these series of acylpyrroles. A computational high-throughput screening (cHTS) study of 2-acylpyrroles 5a,b has been performed calculating >20,700 activity scores vs a large space of 647 assays involving multiple Leishmania species, cell lines, and potential target proteins. Overall, the study demonstrates that the SOFT.PTML all-in-one strategy is useful to obtain IFPTML models in a friendly interface making the work easier and faster than before. The present work also points to 2-acylpyrroles as new lead compounds worthy of further optimization as antileishmanial hits.


Subject(s)
Antiprotozoal Agents , Leishmania , Antiprotozoal Agents/pharmacology , Cell Line
14.
JACC Basic Transl Sci ; 6(11): 815-827, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34869944

ABSTRACT

Untreated familial hypercholesterolemia (FH) leads to atherosclerosis and early cardiovascular disease. Mutations in the low-density lipoprotein receptor (LDLr) gene constitute the major cause of FH, and the high number of mutations already described in the LDLr makes necessary cascade screening or in vitro functional characterization to provide a definitive diagnosis. Implementation of high-predicting capacity software constitutes a valuable approach for assessing pathogenicity of LDLr variants to help in the early diagnosis and management of FH disease. This work provides a reliable machine learning model to accurately predict the pathogenicity of LDLr missense variants with specificity of 92.5% and sensitivity of 91.6%.

15.
Int J Mol Sci ; 22(23)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34884870

ABSTRACT

The parasite species of genus Plasmodium causes Malaria, which remains a major global health problem due to parasite resistance to available Antimalarial drugs and increasing treatment costs. Consequently, computational prediction of new Antimalarial compounds with novel targets in the proteome of Plasmodium sp. is a very important goal for the pharmaceutical industry. We can expect that the success of the pre-clinical assay depends on the conditions of assay per se, the chemical structure of the drug, the structure of the target protein to be targeted, as well as on factors governing the expression of this protein in the proteome such as genes (Deoxyribonucleic acid, DNA) sequence and/or chromosomes structure. However, there are no reports of computational models that consider all these factors simultaneously. Some of the difficulties for this kind of analysis are the dispersion of data in different datasets, the high heterogeneity of data, etc. In this work, we analyzed three databases ChEMBL (Chemical database of the European Molecular Biology Laboratory), UniProt (Universal Protein Resource), and NCBI-GDV (National Center for Biotechnology Information-Genome Data Viewer) to achieve this goal. The ChEMBL dataset contains outcomes for 17,758 unique assays of potential Antimalarial compounds including numeric descriptors (variables) for the structure of compounds as well as a huge amount of information about the conditions of assays. The NCBI-GDV and UniProt datasets include the sequence of genes, proteins, and their functions. In addition, we also created two partitions (cassayj = caj and cdataj = cdj) of categorical variables from theChEMBL dataset. These partitions contain variables that encode information about experimental conditions of preclinical assays (caj) or about the nature and quality of data (cdj). These categorical variables include information about 22 parameters of biological activity (ca0), 28 target proteins (ca1), and 9 organisms of assay (ca2), etc. We also created another partition of (cprotj = cpj) including categorical variables with biological information about the target proteins, genes, and chromosomes. These variables cover32 genes (cp0), 10 chromosomes (cp1), gene orientation (cp2), and 31 protein functions (cp3). We used a Perturbation-Theory Machine Learning Information Fusion (IFPTML) algorithm to map all this information (from three databases) into and train a predictive model. Shannon's entropy measure Shk (numerical variables) was used to quantify the information about the structure of drugs, protein sequences, gene sequences, and chromosomes in the same information scale. Perturbation Theory Operators (PTOs) with the form of Moving Average (MA) operators have been used to quantify perturbations (deviations) in the structural variables with respect to their expected values for different subsets (partitions) of categorical variables. We obtained three IFPTML models using General Discriminant Analysis (GDA), Classification Tree with Univariate Splits (CTUS), and Classification Tree with Linear Combinations (CTLC). The IFPTML-CTLC presented the better performance with Sensitivity Sn(%) = 83.6/85.1, and Specificity Sp(%) = 89.8/89.7 for training/validation sets, respectively. This model could become a useful tool for the optimization of preclinical assays of new Antimalarial compounds vs. different proteins in the proteome of Plasmodium.


Subject(s)
Antimalarials/pharmacology , Drug Discovery/methods , Machine Learning , Plasmodium falciparum/genetics , Algorithms , Antimalarials/chemistry , Databases, Pharmaceutical , Drug Evaluation, Preclinical , Genome, Protozoan , Markov Chains , Models, Theoretical , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Reproducibility of Results
16.
Nanoscale ; 13(42): 17854-17870, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34671801

ABSTRACT

Artificial Intelligence/Machine Learning (AI/ML) algorithms may speed up the design of DADNP systems formed by Antibacterial Drugs (AD) and Nanoparticles (NP). In this work, we used IFPTML = Information Fusion (IF) + Perturbation-Theory (PT) + Machine Learning (ML) algorithm for the first time to study of a large dataset of putative DADNP systems composed by >165 000 ChEMBL AD assays and 300 NP assays vs. multiple bacteria species. We trained alternative models with Linear Discriminant Analysis (LDA), Artificial Neural Networks (ANN), Bayesian Networks (BNN), K-Nearest Neighbour (KNN) and other algorithms. IFPTML-LDA model was simpler with values of Sp ≈ 90% and Sn ≈ 74% in both training (>124 K cases) and validation (>41 K cases) series. IFPTML-ANN and KNN models are notably more complicated even when they are more balanced Sn ≈ Sp ≈ 88.5%-99.0% and AUROC ≈ 0.94-0.99 in both series. We also carried out a simulation (>1900 calculations) of the expected behavior for putative DADNPs in 72 different biological assays. The putative DADNPs studied are formed by 27 different drugs with multiple classes of NP and types of coats. In addition, we tested the validity of our additive model with 80 DADNP complexes experimentally synthetized and biologically tested (reported in >45 papers). All these DADNPs show values of MIC < 50 µg mL-1 (cutoff used) better that MIC of AD and NP alone (synergistic or additive effect). The assays involve DADNP complexes with 10 types of NP, 6 coating materials, NP size range 5-100 nm vs. 15 different antibiotics, and 12 bacteria species. The IFPTML-LDA model classified correctly 100% (80 out of 80) DADNP complexes as biologically active. IFPMTL additive strategy may become a useful tool to assist the design of DADNP systems for antibacterial therapy taking into consideration only information about AD and NP components by separate.


Subject(s)
Nanoparticles , Pharmaceutical Preparations , Algorithms , Anti-Bacterial Agents/pharmacology , Artificial Intelligence , Bayes Theorem , Machine Learning
18.
19.
Curr Top Med Chem ; 21(9): 819-827, 2021.
Article in English | MEDLINE | ID: mdl-33797370

ABSTRACT

BACKGROUND: Checking the connectivity (structure) of complex Metabolic Reaction Networks (MRNs) models proposed for new microorganisms with promising properties is an important goal for chemical biology. OBJECTIVE: In principle, we can perform a hand-on checking (Manual Curation). However, this is a challenging task due to the high number of combinations of pairs of nodes (possible metabolic reactions). RESULTS: The CPTML linear model obtained using the LDA algorithm is able to discriminate nodes (metabolites) with the correct assignation of reactions from incorrect nodes with values of accuracy, specificity, and sensitivity in the range of 85-100% in both training and external validation data series. METHODS: In this work, we used Combinatorial Perturbation Theory and Machine Learning techniques to seek a CPTML model for MRNs >40 organisms compiled by Barabasis' group. First, we quantified the local structure of a very large set of nodes in each MRN using a new class of node index called Markov linear indices fk. Next, we calculated CPT operators for 150000 combinations of query and reference nodes of MRNs. Last, we used these CPT operators as inputs of different ML algorithms. CONCLUSION: Meanwhile, PTML models based on Bayesian network, J48-Decision Tree and Random Forest algorithms were identified as the three best non-linear models with accuracy greater than 97.5%. The present work opens the door to the study of MRNs of multiple organisms using PTML models.


Subject(s)
Machine Learning , Algorithms , Bayes Theorem , Humans , Neural Networks, Computer
20.
Eur J Med Chem ; 220: 113458, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-33901901

ABSTRACT

The development of new molecules for the treatment of leishmaniasis is, a neglected parasitic disease, is urgent as current anti-leishmanial therapeutics are hampered by drug toxicity and resistance. The pyrrolo[1,2-b]isoquinoline core was selected as starting point, and palladium-catalyzed Heck-initiated cascade reactions were developed for the synthesis of a series of C-10 substituted derivatives. Their in vitro leishmanicidal activity against visceral (L. donovani) and cutaneous (L. amazonensis) leishmaniasis was evaluated. The best activity was found, in general, for the 10-arylmethyl substituted pyrroloisoquinolines. In particular, 2ad (IC50 = 3.30 µM, SI > 77.01) and 2bb (IC50 = 3.93 µM, SI > 58.77) were approximately 10-fold more potent and selective than the drug of reference (miltefosine), against L. amazonensis on in vitro promastigote assays, while 2ae was the more active compound in the in vitro amastigote assays (IC50 = 33.59 µM, SI > 8.93). Notably, almost all compounds showed low cytotoxicity, CC50 > 100 µg/mL in J774 cells, highest tested dose. In addition, we have developed the first Perturbation Theory Machine Learning (PTML) algorithm able to predict simultaneously multiple biological activity parameters (IC50, Ki, etc.) vs. any Leishmania species and target protein, with high values of specificity (>98%) and sensitivity (>90%) in both training and validation series. Therefore, this model may be useful to reduce time and assay costs (material and human resources) in the drug discovery process.


Subject(s)
Antiprotozoal Agents/pharmacology , Isoquinolines/pharmacology , Leishmania/drug effects , Leishmaniasis/drug therapy , Palladium/chemistry , Algorithms , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Dose-Response Relationship, Drug , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Leishmaniasis/parasitology , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...