Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(3): e25194, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38317954

ABSTRACT

Biodegradable biopolymers from species of the animal kingdom or their byproducts are sustainable as ecological materials due to their abundant supply and compatibility with the environment. The research aims to obtain a biodegradable active material from chitosan, gelatin, and collagen from bocachico scales (Prochilodus magdalenae). Regarding the methodology, films were developed from gelatin, chitosan, and collagen from bocachico scales (Prochilodus magdalenae) at different concentrations using glycerol as a plasticizer and citric acid as a cross-linker. The films were obtained with the hydrated mass processed by compression molding and characterized according to humidity, water solubility, contact angle, mechanical properties, and structural properties. The results of the films showed a hydrophobic characteristic. First, the chitosan-collagen (CS/CO) films showed a yellowish color, while the gelatin-collagen (Gel/CO) films were transparent and less soluble than the gelatin-collagen (Gel/CO) films. Concerning mechanical properties, gelatin films showed higher stiffness and tensile strength than chitosan films. Furthermore, in the morphological analysis, more homogeneous chitosan films were obtained by increasing the concentration of citric acid. In general, chitosan, gelatin, and collagen extracted from the scales of the bocachico (Prochilodus magdalenae) are an alternative in the application of films in the food industry.

2.
Materials (Basel) ; 16(21)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37959529

ABSTRACT

PVC is widely used in packaging, electrical insulation, and medical devices due to its versatility owing to its resistance, incombustible and barrier properties as well as affordable cost. In the present study, bibliometric and co-occurrence analyses are proposed to identify trends, gaps, future directions, and challenges regarding process system engineering (PSE) applied to the production process of PVC using VOSviewer as a tool for analyzing the data obtained from SCOPUS. A mapping of different topics alluding to simulation of PVC production was provided to gain a better insight into the development of the topic and its progression. The findings indicate that the literature on this topic falls into five different clusters: modeling and simulation of PVC production, process control and optimization, and optimization strategies of the process. From a co-occurrence study we identified that mathematics and statistics applied to polymer chemistry, separation phenomena, and polymer production are the main areas of interest for further research. The trends suggest that Monte Carlo and numerical simulation can contribute to a deeper understanding of PVC's properties and behavior. In addition, the focus on plastics and microplastics reflects concerns about the environmental impact. A bibliometric study evidenced that PSE provides the tools for improvement in PVC production processes by employing advanced process engineering techniques. Modelling and new algorithms for simulation methods of continuous polymerization processes are important to enhance accuracy and efficiency across various applications. The study also proposes a research agenda for future researchers working in the field of the use of PSE applied to the PVC production process.

3.
Polymers (Basel) ; 15(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37447548

ABSTRACT

The new demands for sustainable operation in the chemical industry due to increasing environmental regulations and agreements have generated the need to adapt existing processes to more intelligent production. The plastics sector is in a complex position due to its contribution to economic development and the climate crisis. Therefore, environmental assessment has become an important tool due to the benefits it provides by quantifying the environmental performance of processes, allowing it to balance operational and environmental needs. Polyvinyl chloride (PVC) is one of the most globally used polymers thanks to its resistance, flexibility, and cost-effectiveness. The polymer is synthetized by suspension polymerization, which is characterized by high productivity and controllability. However, it presents problems associated with intensive energy consumption and the emission of toxic substances and greenhouse gases. Therefore, an environmental assessment of the suspension PVC production process was performed using the waste reduction algorithm (WAR). The potential environmental impact (PEI) was quantified using the generation rate and the output velocity for four cases and three different fuels. It was found that the process transforms raw materials with high impacts, such as VCM, into substances with lower PEI, such as PVC. However, the process has a high generation of PEI due to the effects of energy consumption (-2860, -2410, 3020, and 3410 for cases 1-4, respectively). The evaluation of the toxicological impacts shows that the ATP category is the only one that presents a positive generation value (75 PEI/day); the product contributes to the formation and emission of impacts. The atmospheric categories showed that the energy consumption of the process is the most critical aspect with a contribution of 91% of the total impacts emitted. The AP and GWP categories presented the highest values. It was determined that the most suitable fuel is natural gas; it has lower impacts than liquid and solid fuels (coal). Additionally, it can be concluded that the PVC production process by suspension is environmentally acceptable compared to the polyethylene or polypropylene processes, with output impacts 228 and 2561 times lower, respectively.

4.
Materials (Basel) ; 16(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37445198

ABSTRACT

In this study, inert dry bioadsorbents prepared from corn cob residues (CCR), cocoa husk (CH), plantain peels (PP), and cassava peels (CP) were used as adsorbents of heavy metal ions (Pb2+ and Ni2+) in single-batch adsorption experiments from synthetic aqueous solutions. The physicochemical properties of the bioadsorbents and the adsorption mechanisms were evaluated using different experimental techniques. The results showed that electrostatic attraction, cation exchange, and surface complexation were the main mechanisms involved in the adsorption of metals onto the evaluated bioadsorbents. The percentage removal of Pb2+ and Ni2+ increased with higher adsorbent dosage, with Pb2+ exhibiting greater biosorption capacity than Ni2+. The bioadsorbents showed promising potential for adsorbing Pb2+ with monolayer adsorption capacities of 699.267, 568.794, 101.535, and 116.820 mg/g when using PP, CCR, CH, and CP, respectively. For Ni2+, Langmuir's parameter had values of 10.402, 26.984, 18.883, and 21.615, respectively, for PP, CCR, CH, and CP. Kinetics data fitted by the pseudo-second-order model revealed that the adsorption rate follows this order: CH > CP > CCR > PP for Pb2+, and CH > CCR > PP > CP for Ni2+. The adsorption mechanism was found to be controlled by ion exchange and precipitation. These findings suggest that the dry raw biomasses of corn cob residues, cocoa husk, cassava, and plantain peels can effectively remove lead and nickel, but further research is needed to explore their application in industrial-scale and continuous systems.

5.
Toxics ; 11(4)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37112593

ABSTRACT

The textile industry is a global economic driving force; however, it is also one of the most polluting industries, with highly toxic effluents which are complex to treat due to the recalcitrant nature of some compounds present in these effluents. This research focuses on the removal of Chemical Oxygen Demand (COD), color, Total Organic Carbon (TOC), and Ammoniacal Nitrogen (N-NH3) on tannery wastewater treatment through an advanced oxidation process (AOPs) using sodium bicarbonate (NaHCO3), hydrogen peroxide (H2O2) and temperature using a central composite non-factorial design with a surface response using Statistica 7.0 software. All experiments used a 500 mL reactor with 300 mL of tannery wastewater from a company in Cúcuta, Colombia. The physicochemical characterization was done to determine the significant absorbance peaks about the color in the wavelengths between 297 and 669 nm. Statistical analysis found that the concentration of NaHCO3 affects the removal of color and N-NH3; however, it did not affect COD and TOC. The optimal process conditions for removing the different compounds under study were: NaHCO3 1 M, H2O2 2 M, and 60 °C, with efficiencies of 92.35%, 31.93%, 68.85%, and 35.5% N-NH3, COD, color, and TOC respectively. It can be concluded that AOPs using H2O2 and NaHCO3 are recommended to remove color and N-NH3.

6.
Article in English | MEDLINE | ID: mdl-36554550

ABSTRACT

This research focused on the use of residual fiber from oil palm (Elaeis guineensis) for Ni (II) adsorption in a packed bed column. An analysis was conducted on the effect and statistical incidence of changes in temperature, adsorbent particle size, and bed height on the adsorption process. The results showed that particle size and bed height significantly affect the adsorption of Ni (II) ions, reaching adsorption efficiencies between 87.24 and 99.86%. A maximum adsorption capacity of 13.48 mg/g was obtained in the bed with a break time of 180 min. The Ni (II) adsorption in the dynamic system was evaluated by the analysis of the breakage curve with different theoretical models: Yoon-Nelson, dose-response, and Adams-Bohart; the dose-response model was the most appropriate to describe the behavior of the packed bed with an R2 of 84.56%. The breakthrough curve obtained from Aspen Adsorption® appropriately describes the experimental data with an R2 of 0.999. These results indicate that the evaluated bioadsorbent can be recommended for the elimination of Ni (II) in aqueous solutions in a dynamic system, and the simulation of the process can be a tool for the scalability of the process.


Subject(s)
Water Pollutants, Chemical , Water Purification , Nickel , Adsorption , Particle Size , Water , Temperature , Water Purification/methods , Water Pollutants, Chemical/analysis
7.
ACS Omega ; 6(45): 30666-30673, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34805694

ABSTRACT

Magnetite nanoparticles present attractive properties including high magnetization, low toxicity, adsorption capacity, and simple preparation, making them efficient in water purification processes, soil remediation, and biomedical applications. In this sense, there is growing interest in the production of magnetite nanoparticles; therefore, evaluating the performance of this process on a large scale gives relevant information to process designers. In this work, the simulation and exergy analysis of large-scale production of magnetite nanoparticles via coprecipitation were performed using computer-aided tools. The process was modeled for the production of 807 t/year of magnetite nanoparticles; the data for the simulation were obtained from the literature, and experimental results were developed by the authors. The exergy efficiency of the process was estimated at 0.046%. The exergy of waste was estimated to be 105 313 MJ/h, while the unavoidable exergy losses were 2941 MJ/h. Washing 2 and 3 represented the most critical stages of the process, contributing 95.12% of the total irreversibilities due to the waste exergy, which corresponds to the water and ethanol exergy discarded in these stages. These results show that the process must be improved from the energy point of view and require the implementation of process optimization strategies to reach a more sustainable design.

8.
Polymers (Basel) ; 13(11)2021 Jun 06.
Article in English | MEDLINE | ID: mdl-34204156

ABSTRACT

The conservation and proper management of natural resources constitute one of the main objectives of the 2030 Agenda for Sustainable Development designed by the Member States of the United Nations. In this work, a hybrid strategy based on process integration is proposed to minimize freshwater consumption while reusing wastewater. As a novelty, the strategy included a heuristic approach for identifying the minimum consumption of freshwater with a preliminary design of the water network, considering the concept of reuse and multiple pollutants. Then, mathematical programming techniques were applied to evaluate the possibilities of regeneration of the source streams through the inclusion of intercept units and establish the optimal design of the network. This strategy was used in the shrimp shell waste process to obtain chitosan, where a minimum freshwater consumption of 277 t/h was identified, with a reuse strategy and an optimal value of US $5.5 million for the design of the water network.

9.
ACS Omega ; 6(19): 12410-12423, 2021 May 18.
Article in English | MEDLINE | ID: mdl-34056392

ABSTRACT

Green synthesis, based on green chemistry, is replacing the traditional methods, aiming to contribute with an enhanced environmental sustainability, which can be achieved using nontoxic compounds from biological resources, such as natural extracts from plants. In this study, the life cycle assessment (LCA) of iron oxide nanoparticles prepared through the green synthesis and the coprecipitation method is reported by following a cradle-to-gate approach. The LCA allowed quantifying and normalized the environmental impacts produced by the green synthesis (1.0 × 10-9), which used a Cymbopogon citratus (C. citratus) extract and sodium carbonate (Na2CO3). The impacts were also determined for the coprecipitation method (1.4 × 10-8) using the iron(II) salt precursor and sodium hydroxide (NaOH). The contribution of C. citratus extract and Na2CO3 as the precursor and pH-stabilizing agents, respectively, was compared regarding the iron(II) and NaOH compounds. Environmental sustainability was evaluated in human toxicity, ecosystem quality, and resource depletion. The major environmental contribution was found in the marine aquatic ecotoxicity (7.6 × 10-10 and 1.22 × 10-8 for green synthesis and the coprecipitation method) due to the highest values for ethanol (3.5 × 10-10) and electricity (1.4 × 10-8) usage since fossil fuels and wastewater are involved in their production. The C. citratus extract (2.5 × 10-12) presented a better environmental performance, whereas Na2CO3 (4.3 × 10-11) showed a slight increase contribution compared to NaOH (4.1 × 10-11). This is related to their fabrication, involving toxic compounds, land occupation, and excessive water usage. In general, the total environmental impacts are lower for the green synthesis, suggesting the implementation of environmentally friendlier compounds based on natural sources for the production of nanomaterials.

10.
Biomolecules ; 11(4)2021 04 13.
Article in English | MEDLINE | ID: mdl-33924286

ABSTRACT

In this study, the inherent safety analysis of large-scale production of chitosan microbeads modified with TiO2 nanoparticles was developed using the Inherent Safety Index (ISI) methodology. This topology was structured based on two main stages: (i) Green-based synthesis of TiO2 nanoparticles based on lemongrass oil extraction and titanium isopropoxide (TTIP) hydrolysis, and (ii) Chitosan gelation and modification with nanoparticles. Stage (i) is divided into two subprocesses for accomplishing TiO2 synthesis, lemongrass oil extraction and TiO2 production. The plant was designed to produce 2033 t/year of chitosan microbeads, taking crude chitosan, lemongrass, and TTIP as the primary raw materials. The process was evaluated through the ISI methodology to identify improvement opportunity areas based on a diagnosis of process risks. This work used industrial-scale process inventory data of the analyzed production process from mass and energy balances and the process operating conditions. The ISI method comprises the Chemical Inherent Safety Index (CSI) and Process Inherent Safety Index (PSI) to assess a whole chemical process from a holistic perspective, and for this process, it reflected a global score of 28. Specifically, CSI and PSI delivered scores of 16 and 12, respectively. The analysis showed that the most significant risks are related to TTIP handling and its physical-chemical properties due to its toxicity and flammability. Insights about this process's safety performance were obtained, indicating higher risks than those from recommended standards.


Subject(s)
Chemical Safety/methods , Chitosan/analogs & derivatives , Drug Industry/methods , Green Chemistry Technology/methods , Metal Nanoparticles/chemistry , Microspheres , Safety Management/methods , Titanium/chemistry , Chitosan/toxicity , Metal Nanoparticles/toxicity , Plant Oils/chemistry , Terpenes/chemistry , Titanium/toxicity
11.
ACS Omega ; 6(9): 6112-6123, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33718702

ABSTRACT

Colombia is experiencing significant growth in its agricultural areas, its diverse production chains make the country an excellent candidate in the development of biorefineries, and as a result, there is an increasing need to take full advantage of biomass and obtain high value-added by-products from waste. In this sense, biorefineries are presented as a great alternative for the use of biomass; however, the methodologies of biorefinery synthesis lack a parameter that limits the growth of production lines under incremental exergetic and economic returns. This research develops a biorefinery synthesis methodology using an African palm biorefinery as a case study; a novel approach is developed to facilitate a stop criterion for biorefinery expansion through a combined consideration of economic incremental returns (IROI) and exegetical returns of investment (ExROI), avoiding unnecessary plant expansions or new processes that are not profitable or adequate in terms of useful energy. The development of this methodology required simulations in Aspen Plus software and technical-economic and exergetic evaluation with an incremental approach of four scenarios in Excel. The base case is palm oil production from African palm clusters. The second case includes the production of palm kernel oil and palm cake from residues. The third case implements the production of hydrogen based on other residues from the base case. The last case study incorporates the preceding case and the addition of biodiesel and glycerin production from palm oil. Case 3 exhibits a higher economic performance with an IROI of 42.98%; in terms of exergy, case 2 exhibits considerable improvements over the base case, with an ExROI of 158%. A parameter called the exergo-economic weighted incremental return on investment (IExWROI) was obtained, evidencing a 75% improvement in case 2 compared to the base case. The new indicator aims to provide a more comprehensive approach to biorefinery design by optimization of economic and exergetic returns, contributing a new alternative for decision-making in regard to plant design, plant expansion projects, and implementation of subprocesses.

12.
ACS Omega ; 6(5): 3644-3658, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33585745

ABSTRACT

Considering that functional magnetite (Fe3O4) nanoparticles with exceptional physicochemical properties can be highly applicable in different fields, scaling-up strategies are becoming important for their large-scale production. This study reports simulations of scaled-up production of citric acid-coated magnetite nanoparticles (Fe3O4-cit), aiming to evaluate the potential environmental impacts (PEIs) and the exergetic efficiency. The simulations were performed using the waste reduction algorithm and the Aspen Plus software. PEI and energy/exergy performance are calculated and quantified. The inlet and outlet streams are estimated by expanding the mass and energy flow, setting operating parameters of processing units, and defining a thermodynamic model for properties estimation. The high environmental performance of the production process is attributed to the low outlet rate of PEI compared to the inlet rate. The product streams generate low PEI contribution (-3.2 × 103 PEI/y) because of the generation of environmentally friendlier substances. The highest results in human toxicity potential (3.2 × 103 PEI/y), terrestrial toxicity potential (3.2 × 103 PEI/y), and photochemical oxidation potential (2.6 × 104 PEI/y) are attributed to the ethanol within the waste streams. The energy source contribution is considerably low with 27 PEI/y in the acidification potential ascribed to the elevated levels of hydrogen ions into the atmosphere. The global exergy of 1.38% is attributed to the high irreversibilities (1.7 × 105 MJ/h) in the separation stage, especially, to the centrifuge CF-2 (5.07%). The sensitivity analysis establishes that the global exergy efficiency increases when the performance of the centrifuge CF-2 is improved, suggesting to address enhancements toward low disposal of ethanol in the wastewater.

13.
Polymers (Basel) ; 14(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35012049

ABSTRACT

Enhancing the biochemical supply chain towards sustainable development requires more efforts to boost technology innovation at early design phases and avoid delays in industrial biotechnology growth. Such a transformation requires a comprehensive step-wise procedure to guide bioprocess development from laboratory protocols to commercialization. This study introduces a process design framework to guide research and development (R&D) through this journey, bearing in mind the particular challenges of bioprocess modeling. The method combines sustainability assessment and process optimization based on process efficiency indicators, technical indicators, Life Cycle Assessment (LCA), and process optimization via Water Regeneration Networks (WRN). Since many bioprocesses remain at low Technology Readiness Levels (TRLs), the process simulation module was examined in detail to account for uncertainties, providing strategies for successful guidance. The sustainability assessment was performed using the geometric mean-based sustainability footprint metric. A case study based on Chitosan production from shrimp exoskeletons was evaluated to demonstrate the method's applicability and its advantages in product optimization. An optimized scenario was generated through a WRN to improve water management, then compared with the case study. The results confirm the existence of a possible configuration with better sustainability performance for the optimized case with a sustainability footprint of 0.33, compared with the performance of the base case (1.00).

14.
Polymers (Basel) ; 12(10)2020 Oct 18.
Article in English | MEDLINE | ID: mdl-33080966

ABSTRACT

The high freshwater consumption requirements in shrimp biorefinery approaches represents one of the major drawbacks of implementing these technologies within the shrimp processing industry. This also affects the costs associated with the plant operation, and consequently, the overall economic performance of the project. The application of mass integration tools such as water pinch analysis can reduce frewshwater consumption by up to 80%, contributing to shrimp biorefinery sustainability. In this work, the economic evaluation and the techno-economic sensitivity analysis for a mass integrated approach for shrimp biorefinery were performed to determine the economic feasibility of the project when located in the North-Colombia region and to identify the critical techno-economic variables affecting the profitability of the process. The integrated approach designed to process 4113.09 tons of fresh shrimp in Colombia reaches a return on investment (%ROI) at 65.88% and a net present value (NPV) at 10.40 MM USD. The process supports decreases of up to 28% in capacity of production and increases of 12% and 11% in the cost of raw materials and variable operating costs without incurring losses, respectively. These findings suggest that the proposed design of the water recycling network coupled to a shrimp biorefinery approach is attractive from an economic point of view.

15.
ACS Omega ; 5(41): 26463-26475, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33110974

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are complex molecules produced by the thermal decomposition of organic matter in anthropogenic activities. Novel composites with enhanced physicochemical properties aim to overcome limitations such as adsorption capacity, affinity, and stability for PAHs adsorption. Composites based on chitosan are promising due to the good biocompatibility and adsorption properties. This study focuses on the facile preparation of chitosan beads modified with iron oxide (FeO) and titanium dioxide (TiO2) nanoparticles via ionic cross-linking (Ch-FeO/TiO2). FeO and TiO2 were synthesized performing co-precipitation and green chemistry methods, respectively. The characterization evidenced the formation of Ch-FeO/TiO2 with good crystallinity, excellent thermal stability, and superparamagnetic response, attributed to the presence of FeO and TiO2 nanoparticles. High thermal stability up to 270 °C was related to the cross-linked chitosan network. The enhanced adsorption mechanism of Ch-FeO/TiO2 was determined by removing naphthalene from water and seawater samples. The Ch-FeO/TiO2 showed a higher adsorption capacity of 33.1 mg/g compared to 29.8 mg/g of the unmodified chitosan (un-Ch) beads. This is due to the higher functional surface area of 27.13 m2/g, compared to that of 0.708 m2/g for un-Ch. We found a rapid adsorption rate of 240 min and the maximum adsorption capacity of 149.3 mg/g for Ch-FeO/TiO2. A large number of actives sites allows for increasing the naphthalene molecules interaction. Adsorption in seawater samples from Cartagena Bay (Colombia) exhibits an outstanding efficiency of up to 90%. These results suggest a promising, cheap, and environmentally friendly composite for remediation of water sources contaminated with complex compounds.

16.
ACS Omega ; 5(37): 23645-23653, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32984684

ABSTRACT

In this work, two types of residues (industrial fruit byproducts and agricultural wastes) were studies as promising adsorbents for cadmium uptake. Adsorption experiments using the evaluated biomasses (corn crops CC, palm bagasse PB, orange peels OP, and lemon peels LP) were conducted in batch mode by varying initial solution pH (2, 4, and 6) as well as the particle size (0.355, 0.5, and 1 mm). The optimum operating conditions were defined for further adsorption tests. The biomasses were chemically modified with alumina nanoparticles to evaluate the enhancement in adsorption capacities and how the nature of biomass contributes to successful incorporation of nanotechnology-based materials. The point of zero charges was ranged between 4 and 5 for all biomasses. Simultaneously, the Böehm titration method confirmed the presence of lactonic and carboxylic acid groups on the surfaces of the biomasses. Optimum operating conditions for batch cadmium adsorption experiments were observed at pH 6. Moreover, no significant changes were detected as a function of biomass size. For corn cob and lemon peels, removal percentages at 86 and 88% were reached using particle size = 0.5 mm. For palm bagasse and orange peels, the optimum parameters were 0.355 and 1 mm, respectively. Al2O3 nanoparticles with a crystal size of 58 ± 12 nm were obtained by applying the sol-gel methodology. A higher cadmium removal percentage was detected after using the biomasses modified with the Al2O3 nanoparticles, determining for the agricultural wastes an adsorption capacity of 91% (CC-Al2O3) and 92% (PB-Al2O3). In comparison, the industrial fruit byproducts exhibited a removal percentage of 93% (LP-Al2O3) and 96% (OP-Al2O3). The modification of industrial fruit byproducts (lemon peels and orange peels) showed increases in adsorption efficiencies around 12-6% after incorporating alumina nanoparticles, suggesting that this type of biomass is more suitable for adsorption property enhancement using nanomaterials.

17.
ACS Omega ; 5(37): 23654-23661, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32984685

ABSTRACT

In this work, a sour water treatment unit was evaluated combining exergetic analysis and parametric sensitivity analysis. Process simulation was performed using Aspen HYSYS 10.1 following real refinery configurations, and the results were validated with existing data. The parametric sensitivity was evaluated by varying the effect of process variables to identify an alternative case with the best technical performance. The exergy analysis was applied to both base and alternative cases. The outcomes were exergy efficiency by stages, global exergy efficiency, total irreversibilities, and exergy by industrial services. A comparison of both cases was performed to identify opportunities for improvement in real sour water treatment. Results revealed that the overall exergy efficiency for the base case was 44.28%. After improving the technical performance, the overall exergy efficiency decreased to 36.12%; the latter indicated higher irreversibilities due to the increase in the use of industrial services. This finding suggested that those process improvements may affect the performance of this refinery unit from an exergetic point of view.

18.
ACS Omega ; 5(34): 21428-21436, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32905368

ABSTRACT

In this work, the mercaptan oxidation unit of an oil and gas refinery was simulated and assessed using exergy and parametric sensitivity analysis to identify opportunities for improvement from a technical and energy point of view. The process simulation was performed using Aspen HYSYS V10.1 to obtain extended mass and energy balances. The simulation results were validated with the data available in the literature. The effects of operating conditions on technical performance were analyzed via parametric analysis. The exergy analysis was applied to two case studies: the base case and the resulting case from technical improvements. The global exergy efficiency, irreversibilities, exergy of utilities, and efficiencies per stage were calculated to map process equipment with the highest losses of exergy. A comparison between both base and alternative cases was introduced in order to analyze increments in exergy efficiencies. An exergy efficiency of 84.21% was found for the base case, while for the alternative case after applying parametric sensitivity, it was calculated to be 81.95%. This decrease by 2.26% was attributed to the increase of irreversibilities and exergy of wastes to achieve a product with better quality standards.

19.
ACS Omega ; 5(28): 17601-17610, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32715245

ABSTRACT

New ways and technologies for synthesizing adsorbent materials have been emerging based on the green chemistry concept for the sustainable use of available resources. In this sense, the chitosan-based products arise as a promising technology alternative for application of several fields that include mitigation, prevention, and control of environmental issues. Nevertheless, there is a lack of information about the development and behavior of these topologies at the industrial scale. This study addressed the techno-economic and sensitivity analyses as decision-making tools to assess promising topologies for production of chitosan-based bio-adsorbents. From the data provided by process inventory, economic analysis of these routes was implemented. The evaluation allowed obtaining a start point market price for chitosan microbeads (64.40 $/t) and chitosan microbeads modified with TiO2 nanoparticles (37 $/t). The economic analysis also showed that there is a vast potential to explore the chitosan market that enables generation of very profitable businesses from the implementation of those processes, considering the obtained economic performance indicators for both topologies. It is crucial to highlight that these indicators were slightly higher for chitosan microbead production. In addition, the sensitivity analysis indicated that the chitosan-TiO2 process could resist higher fluctuations in the operating costs, which might indicate that this topology might be a reliable alternative between evaluated cases.

20.
ACS Omega ; 5(21): 12126-12135, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32548392

ABSTRACT

The presence of marine pollution in Cartagena Bay (Colombia) is an alarming environmental issue because of the ecotoxicological properties of contaminants such as polycyclic aromatic hydrocarbons (PAHs) that may affect the biodiversity of coastal ecosystems. In this sense, there is a need to propose alternatives to remediate the environmental pollution of such bodies of water. The aim of this work was to design an adsorption-based treatment process for the removal of PAHs from seawater and sediments. Two design cases were considered: (i) a base process without a PAH desorption unit and (ii) an alternative process including a PAH desorption unit. Both designs were simulated using Aspen Plus to obtain mass and energy balances. A parametric sensitivity analysis was carried out to determine optimum operating conditions for solvent recovery and treatment efficiency. The pressure and temperature of evaporators were selected as key parameters, as well as PAH loads in the influent. The environmental performance of base and alternative designs was also evaluated via waste reduction algorithm (WAR) methodology. A maximum recovered solvent flow rate was found when the evaporator operates at 56 °C and 0.81-0.83 atm. In addition, the total generation rate of potential environmental impacts (PEI) reported negative values for cases 1, 3, and 4 (-9.80 × 10-1, -9.25 × 10+1, -1.19 × 10+1, and 1.04 × 10+1 PEI/h). The major concern derived from this analysis is the high environmental impacts reached by the photochemical oxidation potential (PCOP) category associated with the use of hexane and acetone as solvents during PAH removal from sediments. In general, both designs of seawater and sediment treatment seem to be an environmentally friendly alternative for marine pollution remediation.

SELECTION OF CITATIONS
SEARCH DETAIL
...