Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nanotechnology ; 35(9)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38035378

ABSTRACT

The morphology of numerous nanocolumnar thin films deposited by the magnetron sputtering technique at oblique geometries and at relatively low temperatures has been analyzed for materials as different as Au, Pt, Ti, Cr, TiO2, Al, HfN, Mo, V, WO3and W. Despite similar deposition conditions, two characteristic nanostructures have been identified depending on the material: a first one defined by highly tilted and symmetric nanocolumnar structures with a relatively high film density, and a second one characterized by rather vertical and asymmetric nanocolumns, with a much lower film density. With the help of a model, the two characteristic nanostructures have been linked to different growth dynamics and, specifically, to different surface relaxation mechanisms upon the incorporation of gaseous species with kinetic energies above the surface binding energy. Moreover, in the case of Ti, a smooth structural transition between the two types of growths has been found when varying the value of the power used to maintain the plasma discharge. Based on these results, the existence of different surface relaxation mechanisms is proposed, which quantitatively explains numerous experimental results under the same conceptual framework.

2.
Nanotechnology ; 34(25)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36947879

ABSTRACT

The low temperature formation of monoclinic VO2crystal domains in nanocolumnar vanadium/oxygen thin films prepared by magnetron sputtering at oblique angles is analyzed. The synthesis procedure involved the deposition of amorphous nanocolumnar VO1.9thin films at room temperature and its subsequent annealing at temperatures between 250 °C and 330 °C in an oxygen atmosphere. The thermochromic transition of these films was found at a temperature of 47 °C when the annealing temperature was 270 °C and 58 °C when the annealing temperature was 280 °C and 290 °C, presenting a clear drop of the optical transmittance in the infrared region of the spectrum. The significant downshift in the temperature window to obtain VO2in comparison with compact films and other strategies in literature is explained by the particular morphology of the nanocolumnar structures, which contains numerous defects along with open and embedded porosity.

3.
Nanotechnology ; 30(47): 475603, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31426050

ABSTRACT

We experimentally analyze different growth regimes of Ti thin films associated to the existence of kinetic energy-induced relaxation mechanisms in the material's network when operating at oblique geometries. For this purpose, we have deposited different films by evaporation and magnetron sputtering under similar geometrical arrangements and at low temperatures. With the help of a well-established growth model we have found three different growth regimes: (i) low energy deposition, exemplified by the evaporation technique, carried out by species with typical energies in the thermal range, where the morphology and density of the film can be explained by solely considering surface shadowing processes, (ii) magnetron sputtering under weak plasma conditions, where the film growth is mediated by surface shadowing mechanisms and kinetic-energy-induced relaxation processes, and (iii) magnetron sputtering under intense plasma conditions, where the film growth is highly influenced by the plasma, and whose morphology is defined by nanocolumns with similar tilt than evaporated films, but with much higher density. The existence of these three regimes explains the variety of morphologies of nanocolumnar Ti thin films grown at oblique angles under similar conditions in the literature.

4.
Nanotechnology ; 28(46): 465605, 2017 11 17.
Article in English | MEDLINE | ID: mdl-29063864

ABSTRACT

In this work we analyze a phenomenon that takes place when growing magnetron sputtered porous/compact multilayer systems by alternating the oblique angle and the classical configuration geometries. We show that the compact layers develop numerous fissures rooted in the porous structures of the film below, in a phenomenon that amplifies when increasing the number of stacked layers. We demonstrate that these fissures emerge during growth due to the high roughness of the porous layers and the coarsening of a discontinuous interfacial region. To minimize this phenomenon, we have grown thin interlayers between porous and compact films under the impingement of energetic plasma ions, responsible for smoothing out the interfaces and inhibiting the formation of structural fissures. This method has been tested in practical situations for compact TiO2/porous SiO2 multilayer systems, although it can be extrapolated to other materials and conditions.

5.
Nanotechnology ; 28(48): 485602, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29019468

ABSTRACT

In this work we have developed an infiltration methodology to incorporate metal nanoparticles (NPs) of controlled size and shape into the open voids available in oblique angle deposited thin films. These NPs exhibited well-defined surface plasmon resonances (SPRs). The nanometric confined space provided by their porous microstructure has been used as a template for the growth of anisotropic NPs with interesting SPR properties. The fabrication methodology has been applied for the preparation of films with embedded Ag and Au NPs with two associated plasmon resonance features that developed a dichroic behaviour when examined with linearly polarized light. A confined alloying process was induced by near IR nanosecond laser irradiation yielding bimetallic NPs with SPR features covering a large zone of the electromagnetic spectrum. The possibilities of the method for the tailored fabrication of a wide range colour palette based on SPR features are highlighted.

6.
Sci Rep ; 7(1): 5924, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28725039

ABSTRACT

Plasma treatment is recognized as a suitable technology to improve germination efficiency of numerous seeds. In this work Quinoa seeds have been subjected to air plasma treatments both at atmospheric and low pressure and improvements found in germination rate and percentage of success. Seed water uptake by exposure to water vapor, although slightly greater for plasma treated seeds, did not justify the observed germination improvement. To identify other possible factors contributing to germination, the chemical changes experienced by outer parts of the seed upon plasma exposure have been investigated by X-ray photoemission spectroscopy (XPS) and scanning electron microscopy (SEM-EDX). XPS revealed that the outer layers of the Quinoa plasma treated seeds were highly oxidized and appeared enriched in potassium ions and adsorbed nitrate species. Simultaneously, SEM-EDX showed that the enrichment in potassium and other mineral elements extended to the seed pericarp and closer zones. The disappearance from the surface of both potassium ions and nitrate species upon exposure of the plasma treated seeds to water vapor is proposed as a factor favoring germination. The use of XPS to study chemical changes at seed surfaces induced by plasma treatments is deemed very important to unravel the mechanisms contributing to germination improvement.


Subject(s)
Chenopodium quinoa/chemistry , Germination/drug effects , Plasma Gases/pharmacology , Seeds/chemistry , Photoelectron Spectroscopy , Seeds/ultrastructure , Surface Properties , Water/chemistry
7.
Nanotechnology ; 27(39): 395702, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27535651

ABSTRACT

Porous thin films grown at oblique angles by evaporation techniques are formed by tilted nanocolumnar structures which, depending on the material type and growth conditions, associate along certain preferential directions, giving rise to large domains. This arrangement, commonly denoted as bundling association, is investigated in the present work by performing fundamental experiments and growth simulations. It is proved that trapping processes of vapor species at the film surface, together with the shadowing mechanism, mediate the anisotropic widening of the nanocolumns and promote their preferential coalescence along certain directions, giving rise to domains with different shape and size. The role of these two processes is thoroughly studied in connection with the formation of these domains in materials as different as SiO2 and TiO2.

8.
ACS Appl Mater Interfaces ; 8(37): 24880-6, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27556592

ABSTRACT

This paper presents a new method for the fabrication of metal-like decorative layers on glazed ceramic tiles. It consists of the laser treatment of Cu thin films prepared by electron-beam evaporation at glancing angles. A thin film of discontinuous Cu nanoparticles was electron-beam-evaporated in an oblique angle configuration onto ceramic tiles and an ample palette of colors obtained by laser treatment both in air and in vacuum. Scanning electron microscopy along with UV-vis-near-IR spectroscopy and time-of-flight secondary ion mass spectrometry analysis were used to characterize the differently colored layers. On the basis of these analyses, color development has been accounted for by a simple model considering surface melting phenomena and different microstructural and chemical transformations of the outmost surface layers of the samples.

9.
Opt Express ; 24(13): 14383-92, 2016 Jun 27.
Article in English | MEDLINE | ID: mdl-27410592

ABSTRACT

A compact and portable optofluidic microresonator has been fabricated and characterized. It is based on a Fabry-Perot microcavity consisting essentially of two tailored dichroic Bragg mirrors prepared by reactive magnetron sputtering deposition. The microresonator has been filled with an ethanol solution of Nile-Blue dye. Infrared laser emission has been measured with a pump threshold as low as 0.12 MW/cm2 and an external energy conversion efficiency of 41%. The application of the device as a temperature and a chemical sensor is demonstrated. Small temperature variations as well as small amount of water concentrations in the liquid laser medium are detected as a shift of the resonant laser modes.

10.
Opt Express ; 23(24): A1642-50, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26698810

ABSTRACT

The present work proposes the use of a TiO2 electrode coupled to a one-dimensional photonic crystal (1DPC), all formed by the sequential deposition of nanocolumnar thin films by physical vapor oblique angle deposition (PV-OAD), to enhance the optical and electrical performance of DSCs while transparency is preserved. We demonstrate that this approach allows building an architecture combining a non-dispersive 3 µm of TiO2 electrode and 1 µm TiO2-SiO2 1DPC, both columnar, in a single-step process. The incorporation of the photonic structure is responsible for a rise of 30% in photovoltaic efficiency, as compared with a transparent cell with a single TiO2 electrode. Detailed analysis of the spectral dependence of the photocurrent demonstrates that the 1DPC improves light harvesting efficiency by both back reflection and optical cavity modes confinement within the TiO2 films, thus increasing the overall performance of the cell.

11.
Nanotechnology ; 24(4): 045604, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23299349

ABSTRACT

Growth regimes of gold thin films deposited by magnetron sputtering at oblique angles and low temperatures are studied from both theoretical and experimental points of view. Thin films were deposited in a broad range of experimental conditions by varying the substrate tilt angle and background pressure, and were analyzed by field emission scanning electron microscopy and grazing-incidence small-angle x-ray scattering techniques. Results indicate that the morphological features of the films strongly depend on the experimental conditions, but can be categorized within four generic microstructures, each of them defined by a different bulk geometrical pattern, pore percolation depth and connectivity. With the help of a growth model, a microstructure phase diagram has been constructed where the main features of the films are depicted as a function of experimentally controllable quantities, finding a good agreement with the experimental results in all the studied cases.


Subject(s)
Gold/chemistry , Membranes, Artificial , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Models, Chemical , Models, Molecular , Computer Simulation , Crystallization/methods , Hot Temperature , Macromolecular Substances/chemistry , Magnetic Fields , Materials Testing , Molecular Conformation , Particle Size , Porosity , Surface Properties
12.
Nanotechnology ; 23(25): 255303, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-22652701

ABSTRACT

Supported ZnO nanorods have been prepared at 405 K by plasma-enhanced chemical vapour deposition (PECVD) using diethylzinc as precursor, oxygen plasma and silver as the promotion layer. The nanorods are characterized by a hollow and porous microstructure where partially percolated silver nanoparticles are located. By changing different deposition parameters like the thickness of the silver layer, the type of oxidation pretreatment or the geometry of the deposition set-up, the length, the width and the tilting angle of the nanorods with respect to the substrate can be modified. Other nanostructures like nanobushes, zigzag linear structures and stacked bilayers with nanocolumns of TiO(2) can also be prepared by adjusting the deposition conditions. A phenomenological model relying on the assessment of the diverse nanostructure morphologies and the evidence provided by an in situ x-ray photoelectron spectroscopy (XPS) experiment has been proposed to describe their formation mechanism. From this analysis it is deduced that the effect of the electrical field of the plasma sheath, the high mobility of silver and silver oxide, and the diffusion of the precursor molecules are some of the critical factors that must converge by the formation of the nanorods.

13.
Anal Bioanal Chem ; 396(8): 2757-68, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19957075

ABSTRACT

The measured peak shape and intensity of the photoemitted signal in X-ray photoelectron spectroscopy (XPS) experiments (elastic and inelastic parts included) are strongly correlated, through electron-transport theory, with the depth distribution of photoelectron emitters within the analyzed surface. This is the basis of so-called XPS peak-shape analysis (also known as the Tougaard method) for non-destructive determination of compositional in-depth (up to 6-8 nm) profiles. This review describes the theoretical basis and reliability of this procedure for quantifying amounts and distributions of material within a surface. The possibilities of this kind of analysis are illustrated with several case examples related to the study of the initial steps of thin-film growth and the modifications induced in polymer surfaces after plasma treatments.

14.
Langmuir ; 24(16): 9135-9, 2008 Aug 19.
Article in English | MEDLINE | ID: mdl-18630935

ABSTRACT

Herein we report an analysis of the variation of the optical properties of different nanoparticle-based one-dimensional photonic crystal architectures versus changes in the ambient vapor pressure. Gradual shift of the optical response provides us with information on the sorption properties of these structures and allow us to measure precise adsorption isotherms of these porous multilayers. The potential of nanoparticle-based one-dimensional photonic crystals as base materials for optical sensing devices is demonstrated in this way.

15.
Phys Rev Lett ; 96(23): 236101, 2006 Jun 16.
Article in English | MEDLINE | ID: mdl-16803386

ABSTRACT

The microstructure and the scaling properties of films grown by plasma enhanced chemical vapor deposition are reproduced with a discrete model that takes into account the angular distribution function of the particles and the lateral growth of the films. Both the experimental and simulated surfaces exhibit a granular microstructure and an anomalous scaling behavior characterized by values of the growth exponent beta that vary with the scale of measurement. Depending on the angular distribution function used in the model, values of beta ranging from 0.86 to 0.2 are obtained.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(1 Pt 2): 016401, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16090093

ABSTRACT

In this work the influence of the excited states on the electron-energy distribution function has been determined for an argon microwave discharge at low pressure. A collisional-radiative model of argon has been developed taking into account the most recent experimental and theoretical values of argon-electron-impact excitation cross sections. The model has been solved along with the electron Boltzmann equation in order to study the influence of the inelastic collisions from the argon excited states on the electron-energy distribution function. Results show that under certain conditions the excited states can play an important role in determining the shape of the distribution function and the mean kinetic energy of the electrons, deplecting the high-energy tail due to inelastic processes from the excited states, especially from the 4s excited configuration. It has been found that from the populations of the excited states an excitation temperature can be defined. This excitation temperature, which can be experimentally determined by optical emission spectroscopy, is lower than the electron kinetic temperature obtained from the electron-energy distribution function.

17.
J Phys Chem A ; 109(22): 4930-8, 2005 Jun 09.
Article in English | MEDLINE | ID: mdl-16833840

ABSTRACT

The plasma chemistry of NO has been investigated in gas mixtures with oxygen and/or hydrocarbon and Ar as carrier gas. Surface wave discharges operating at microwave frequencies have been used for this study. The different plasma reactions have been analyzed for a pressure range between 30 and 75 Torr. Differences in product concentration and/or reaction yields smaller than 10% were found as a function of this parameter. The following gas mixtures have been considered for investigation: Ar/NO, Ar/NO/O2, Ar/NO/CH4, Ar/CH4/O2, Ar/NO/CH4/O2. It is found that NO decomposes into N2 and O2, whereas other products such as CO, H2, and H2O are also formed when CH4 and O2 are present in the reaction mixture. Depending on the working conditions, other minority products such as HCN, CO2, and C2 or higher hydrocarbons have been also detected. The reaction of an Ar/NO plasma with deposits of solid carbon has also been studied. The experiments have provided useful information with respect to the possible removal of soot particles by this type of plasma. It has been shown that carbon deposits are progressively burned off by interaction with the plasma, and practically 100% decomposition of NO was found. Plasma intermediate species have been studied by optical emission spectroscopy (OES). Bands and/or peaks due to N2*, NO*, OH*, C2*, CN*, CH*, or H* were detected with different relative intensities depending on the gas mixture. From the analysis of both the reaction products and efficiency and the type of intermediate species detected by OES, different plasma reactions and processes are proposed to describe the plasma chemistry of NO in each particular mixture of gases. The results obtained provide interesting insights about the plasma removal of NO in real gas exhausts.

18.
J Phys Chem B ; 109(16): 7758-65, 2005 Apr 28.
Article in English | MEDLINE | ID: mdl-16851901

ABSTRACT

This paper reports an analysis of the changes in the photoemission parameters of copper in small particles of copper oxides deposited on silicon dioxide. This study is of relevance for investigations in the fields of heterogeneous catalysis and coordination chemistry. Copper oxides (Cu2O and CuO) have been deposited on the surface of a flat SiO2 substrate by evaporation of copper and subsequent oxidization of the deposited particles. XPS has been used to analyze the chemical and coordination state of copper. Large variations in the Cu 2p(3/2) binding energy (BE) and Auger parameter (alpha') have been found as a function of the type and amount of deposited copper oxide. The differences in BE calculated from the values of the lowest amount of deposited material and those of the bulk compounds were -0.4 eV (Cu2O) and -1.9 eV (CuO), while those in alpha' amounted to 2.9 (Cu2O) and 1.6 eV (CuO). The observed changes have been described in terms of the chemical state vector (CSV) concept in a Wagner plot and rationalized by considering the characteristics of bonding and electronic interactions that occur at a given oxide/oxide interface. These interactions have been modeled by means of quantum mechanical calculations with cluster models simulating the Cu-O-Si bonding at the interface. The effect of the polarization of the surrounding media around the copper cations has been also estimated for both the dispersed clusters supported on the SiO2 substrate and for the copper oxide materials in bulk form. A change in the values of alpha' and BE of copper (ie., delta alpha' = 1.1 eV, deltaBE = 0.1 eV) upon adsorption on the Cu+ species of Cu2O moieties dispersed on SiO2 of a phenyl-acetylene molecule illustrates the use of XPS to study the formation of cation-ligand complexes in heterogeneous systems. A detailed description of the bonding interactions of these coordinated Cu+ species in terms of initial and final state effects of the photoemission process has been also carried out by means of quantum mechanical calculations and cluster models.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(6 Pt 2): 066401, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12513406

ABSTRACT

Both an energy balance equation and a collisional-radiative model were developed in order to discover which process is responsible for gas heating in a low-pressure argon discharge. In this way, for a wide range of plasma conditions, the space-charge field contribution to gas heating was found to be negligible compared to that resulting from elastic collisional processes, although the value of the former is higher than the latter when calculating the absorbed power per electron. This is due to (1) the heating associated with the space-charge field only being effective in the plasma sheath, which is very close to the vessel inner wall. (2) The vessel temperature value at the external wall is taken as a boundary condition, as a result of which the space-charge field influence on gas heating is indirectly imposed on the model. The results of the collisional-radiative model take into account the influence of gas heating on the electron temperature and on the argon low-lying excited levels. Two different zones have been found. The first corresponds to low electron densities, in which the gas temperature remains constant, whereas in the second (high electron densities) the heating of the gas takes on great importance. These results compare well with experimental data.

SELECTION OF CITATIONS
SEARCH DETAIL
...