Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 459: 140334, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38981379

ABSTRACT

Avocado ripening entails intricate physicochemical transformations resulting in desirable characteristics for consumption; however, its impact on specific metabolites and its cultivar dependence remains largely unexplored. This study employed LC-MS to quantitatively monitor 30 avocado pulp metabolites, including phenolic compounds, amino acids, nucleosides, vitamins, phytohormones, and related compounds, from unripe to overripe stages, in three commercial varieties (Hass, Fuerte, and Bacon). Multivariate statistical analysis revealed significant metabolic variations between cultivars, leading to the identification of potential varietal markers. Most monitored metabolites exhibited dynamic quantitative changes. Although phenolic compounds generally increased during ripening, exceptions such as epicatechin and chlorogenic acid were noted. Amino acids and derivatives displayed a highly cultivar-dependent evolution, with Fuerte demonstrating the highest concentrations and most pronounced fluctuations. In contrast to penstemide, uridine and abscisic acid levels consistently increased during ripening. Several compounds characteristic of the Bacon variety were delineated but require further research for identification and role elucidation.

2.
Plants (Basel) ; 12(16)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37631215

ABSTRACT

Spain dominates avocado production in Europe, with the Hass variety being the most prominent. Despite this, Spanish production satisfies less than 10% of the overall avocado demand in Europe. Consequently, the European avocado market heavily relies on imports from overseas, primarily sourced from Peru and Chile. Herein, a comprehensive characterization of the metabolic profile of Hass avocado fruits from Spain, Peru, and Chile, available in the European market throughout the year, was carried out. The determination of relevant substances was performed using high- and low-resolution RP-LC-MS. Remarkable quantitative differences regarding phenolic compounds, amino acids, and nucleosides were observed. Principal component analysis revealed a natural clustering of avocados according to geographical origin. Moreover, a specific metabolic pattern was established for each avocado-producing country using supervised partial least squares discriminant analysis. Spanish fruits exhibited high levels of coumaric acid malonyl-hexose II, coumaric acid hexose II, and ferulic acid hexose II, together with considerably low levels of pantothenic acid and uridine. Chilean avocado fruits presented high concentrations of abscisic acid, uridine, ferulic acid, succinic acid, and tryptophan. Fruits from Peru showed high concentrations of dihydroxybenzoic acid hexose, alongside very low levels of p-coumaric acid, ferulic acid, coumaric acid malonyl-hexose I, and ferulic acid hexose II.

3.
J Agric Food Chem ; 71(14): 5674-5685, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36988630

ABSTRACT

Avocado fruit growth and development, unlike that of other fruits, is characterized by the accumulation of oil and C7 sugars (in most fruits, the carbohydrates that prevail are C6). There are five essential carbohydrates which constitute 98% of the total content of soluble sugars in this fruit; these are fructose, glucose, sucrose, d-mannoheptulose, and perseitol, which together with quinic acid and chlorogenic acid have been the analytes under study in this work. After applying an efficient extraction procedure, a novel methodology based on hydrophilic interaction liquid chromatography coupled to mass spectrometry was applied to determine the levels of these seven substances in tissues─exocarp, seed, and mesocarp─from avocado fruits of two different varieties scarcely studied, Bacon and Fuerte, at three different ripening stages. Quantitative characterization of the selected tissues was performed, and the inter-tissue distribution of metabolites was described. For both varieties, d-mannoheptulose was the major component in the mesocarp and exocarp, whereas perseitol was predominant in the seed, followed by sucrose and d-mannoheptulose. Sucrose was found to be more abundant in seed tissues, with much lower concentrations in avocado mesocarp and exocarp. Quinic acid showed a predominance in the exocarp, and chlorogenic acid was exclusively determined in exocarp samples.


Subject(s)
Chromatography, Liquid , Mass Spectrometry , Persea , Pork Meat , Carbohydrates/analysis , Chlorogenic Acid/analysis , Chromatography, Liquid/methods , Fruit/anatomy & histology , Fruit/chemistry , Mannoheptulose/analysis , Mass Spectrometry/methods , Persea/anatomy & histology , Persea/chemistry , Pork Meat/analysis , Quinic Acid/analysis , Seeds/chemistry , Seeds/metabolism , Sucrose/analysis
4.
Food Chem ; 394: 133447, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35717919

ABSTRACT

When the recipient of the product is relatively distant from the production area, it is necessary to use cold storage and controlled humidity to transport the avocado fruits. One of the main advantages of local avocado consumption lies on the possibility of prolonging on-tree maturation; this could foreseeably modify the metabolic profile of the fruit that reaches the consumer. In this work, the effect of prolonged on tree maturation (during different time intervals) on the final composition of avocado fruit (at edible ripeness) was evaluated and compared with the impact of the same periods after prolonged cold storage. The quantitative evolution of nine bioactive metabolites (7 phenolic compounds, pantothenic and abscisic acids) over 40 days (10-days intervals) was studied by using a solid-liquid extraction protocol and a LC-MS methodology. The results were discussed both considering the quantitative evolution of each individual compound and the sum of all of them.


Subject(s)
Persea , Abscisic Acid/metabolism , Chromatography, Liquid , Fruit/metabolism , Persea/metabolism , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...